Nuprl Lemma : p-id_wf

[T:Type]. (p-id() ∈ T ⟶ (T Top))


Proof




Definitions occuring in Statement :  p-id: p-id() uall: [x:A]. B[x] top: Top member: t ∈ T function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  p-id: p-id() uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality inlEquality hypothesisEquality lemma_by_obid hypothesis sqequalHypSubstitution sqequalRule axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  (p-id()  \mmember{}  T  {}\mrightarrow{}  (T  +  Top))



Date html generated: 2016_05_15-PM-03_29_54
Last ObjectModification: 2015_12_27-PM-01_10_06

Theory : general


Home Index