Nuprl Lemma : p-id_wf
∀[T:Type]. (p-id() ∈ T ⟶ (T + Top))
Proof
Definitions occuring in Statement : 
p-id: p-id()
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
p-id: p-id()
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
inlEquality, 
hypothesisEquality, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  (p-id()  \mmember{}  T  {}\mrightarrow{}  (T  +  Top))
Date html generated:
2016_05_15-PM-03_29_54
Last ObjectModification:
2015_12_27-PM-01_10_06
Theory : general
Home
Index