Nuprl Lemma : p-fun-exp_wf
∀[A:Type]. ∀[f:A ⟶ (A + Top)]. ∀[n:ℕ].  (f^n ∈ A ⟶ (A + Top))
Proof
Definitions occuring in Statement : 
p-fun-exp: f^n
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
p-fun-exp: f^n
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
Lemmas referenced : 
primrec_wf, 
top_wf, 
p-id_wf, 
p-compose_wf, 
int_seg_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesisEquality, 
unionEquality, 
hypothesis, 
lambdaEquality, 
natural_numberEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  (A  +  Top)].  \mforall{}[n:\mBbbN{}].    (f\^{}n  \mmember{}  A  {}\mrightarrow{}  (A  +  Top))
Date html generated:
2016_05_15-PM-03_31_44
Last ObjectModification:
2015_12_27-PM-01_11_21
Theory : general
Home
Index