Nuprl Lemma : p-fun-exp_wf

[A:Type]. ∀[f:A ⟶ (A Top)]. ∀[n:ℕ].  (f^n ∈ A ⟶ (A Top))


Proof




Definitions occuring in Statement :  p-fun-exp: f^n nat: uall: [x:A]. B[x] top: Top member: t ∈ T function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  p-fun-exp: f^n uall: [x:A]. B[x] member: t ∈ T nat:
Lemmas referenced :  primrec_wf top_wf p-id_wf p-compose_wf int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesisEquality unionEquality hypothesis lambdaEquality natural_numberEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  (A  +  Top)].  \mforall{}[n:\mBbbN{}].    (f\^{}n  \mmember{}  A  {}\mrightarrow{}  (A  +  Top))



Date html generated: 2016_05_15-PM-03_31_44
Last ObjectModification: 2015_12_27-PM-01_11_21

Theory : general


Home Index