Nuprl Lemma : p-compose_wf
∀[A,B,C:Type]. ∀[g:A ⟶ (B + Top)]. ∀[f:B ⟶ (C + Top)].  (f o g ∈ A ⟶ (C + Top))
Proof
Definitions occuring in Statement : 
p-compose: f o g
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
p-compose: f o g
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
can-apply: can-apply(f;x)
, 
isl: isl(x)
, 
not: ¬A
, 
true: True
, 
prop: ℙ
Lemmas referenced : 
can-apply_wf, 
eqtt_to_assert, 
do-apply_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
istype-universe, 
istype-top, 
true_wf, 
istype-void
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaEquality_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
hypothesis, 
because_Cache, 
sqequalRule, 
inhabitedIsType, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation_alt, 
equalityIsType1, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
axiomEquality, 
functionIsType, 
unionIsType, 
isect_memberEquality_alt, 
universeIsType, 
universeEquality, 
natural_numberEquality, 
inrEquality_alt
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[g:A  {}\mrightarrow{}  (B  +  Top)].  \mforall{}[f:B  {}\mrightarrow{}  (C  +  Top)].    (f  o  g  \mmember{}  A  {}\mrightarrow{}  (C  +  Top))
Date html generated:
2019_10_15-AM-11_07_16
Last ObjectModification:
2018_10_11-PM-09_47_40
Theory : general
Home
Index