Nuprl Lemma : p-compose_wf

[A,B,C:Type]. ∀[g:A ⟶ (B Top)]. ∀[f:B ⟶ (C Top)].  (f g ∈ A ⟶ (C Top))


Proof




Definitions occuring in Statement :  p-compose: g uall: [x:A]. B[x] top: Top member: t ∈ T function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T p-compose: g subtype_rel: A ⊆B all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False can-apply: can-apply(f;x) isl: isl(x) not: ¬A true: True prop:
Lemmas referenced :  can-apply_wf eqtt_to_assert do-apply_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot istype-universe istype-top true_wf istype-void
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaEquality_alt extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality functionExtensionality applyEquality hypothesis because_Cache sqequalRule inhabitedIsType lambdaFormation_alt unionElimination equalityElimination productElimination independent_isectElimination equalityTransitivity equalitySymmetry dependent_pairFormation_alt equalityIsType1 promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination axiomEquality functionIsType unionIsType isect_memberEquality_alt universeIsType universeEquality natural_numberEquality inrEquality_alt

Latex:
\mforall{}[A,B,C:Type].  \mforall{}[g:A  {}\mrightarrow{}  (B  +  Top)].  \mforall{}[f:B  {}\mrightarrow{}  (C  +  Top)].    (f  o  g  \mmember{}  A  {}\mrightarrow{}  (C  +  Top))



Date html generated: 2019_10_15-AM-11_07_16
Last ObjectModification: 2018_10_11-PM-09_47_40

Theory : general


Home Index