Nuprl Lemma : do-apply_wf

[A,B:Type]. ∀[f:A ⟶ (B Top)]. ∀[x:A].  do-apply(f;x) ∈ supposing ↑can-apply(f;x)


Proof




Definitions occuring in Statement :  do-apply: do-apply(f;x) can-apply: can-apply(f;x) assert: b uimplies: supposing a uall: [x:A]. B[x] top: Top member: t ∈ T function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a do-apply: do-apply(f;x) can-apply: can-apply(f;x) implies:  Q prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] top: Top
Lemmas referenced :  outl_wf top_wf assert_wf isl_wf can-apply_wf subtype_rel_dep_function subtype_rel_union
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis applyEquality independent_isectElimination independent_functionElimination equalityTransitivity equalitySymmetry sqequalRule axiomEquality lambdaEquality unionEquality because_Cache isect_memberEquality voidElimination voidEquality functionEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  (B  +  Top)].  \mforall{}[x:A].    do-apply(f;x)  \mmember{}  B  supposing  \muparrow{}can-apply(f;x)



Date html generated: 2016_05_15-PM-03_28_45
Last ObjectModification: 2015_12_27-PM-01_09_35

Theory : general


Home Index