Nuprl Lemma : inl-do-apply

[A,B:Type]. ∀[f:A ⟶ (B Top)]. ∀[x:A].  inl do-apply(f;x) supposing ↑can-apply(f;x)


Proof




Definitions occuring in Statement :  do-apply: do-apply(f;x) can-apply: can-apply(f;x) assert: b uimplies: supposing a uall: [x:A]. B[x] top: Top apply: a function: x:A ⟶ B[x] inl: inl x union: left right universe: Type sqequal: t
Definitions unfolded in proof :  do-apply: do-apply(f;x) can-apply: can-apply(f;x) member: t ∈ T all: x:A. B[x] implies:  Q isl: isl(x) outl: outl(x) assert: b ifthenelse: if then else fi  btrue: tt prop: bfalse: ff false: False uall: [x:A]. B[x] subtype_rel: A ⊆B uimplies: supposing a top: Top
Lemmas referenced :  top_wf true_wf false_wf equal_wf assert_wf can-apply_wf subtype_rel_union
Rules used in proof :  cut thin sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity applyEquality functionExtensionality hypothesisEquality cumulativity unionEquality introduction extract_by_obid hypothesis lambdaFormation unionElimination sqequalRule sqequalHypSubstitution voidElimination isectElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination because_Cache independent_isectElimination lambdaEquality isect_memberEquality voidEquality functionEquality universeEquality isect_memberFormation sqequalAxiom

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  (B  +  Top)].  \mforall{}[x:A].    inl  do-apply(f;x)  \msim{}  f  x  supposing  \muparrow{}can-apply(f;x)



Date html generated: 2017_10_01-AM-09_13_17
Last ObjectModification: 2017_07_26-PM-04_48_45

Theory : general


Home Index