Nuprl Lemma : page55_witness

[U:Type]. ∀[P,Q:U ⟶ ℙ].  ((∀x:U. (P[x]  Q[x]))  (∀x:U. P[x])  (∀x:U. Q[x]))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T page55
Lemmas referenced :  page55
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}[U:Type].  \mforall{}[P,Q:U  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x:U.  (P[x]  {}\mRightarrow{}  Q[x]))  {}\mRightarrow{}  (\mforall{}x:U.  P[x])  {}\mRightarrow{}  (\mforall{}x:U.  Q[x]))



Date html generated: 2018_05_21-PM-09_03_49
Last ObjectModification: 2018_05_19-PM-05_08_17

Theory : general


Home Index