Nuprl Lemma : page55_witness
∀[U:Type]. ∀[P,Q:U ⟶ ℙ].  ((∀x:U. (P[x] 
⇒ Q[x])) 
⇒ (∀x:U. P[x]) 
⇒ (∀x:U. Q[x]))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
page55
Lemmas referenced : 
page55
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[U:Type].  \mforall{}[P,Q:U  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x:U.  (P[x]  {}\mRightarrow{}  Q[x]))  {}\mRightarrow{}  (\mforall{}x:U.  P[x])  {}\mRightarrow{}  (\mforall{}x:U.  Q[x]))
Date html generated:
2018_05_21-PM-09_03_49
Last ObjectModification:
2018_05_19-PM-05_08_17
Theory : general
Home
Index