Step
*
of Lemma
pair-list-set-type
∀[T:Type]. ∀[B:T ⟶ Type]. ∀[L:(t:T × B[t]) List]. (L ∈ (t:{t:T| (t ∈ map(λp.(fst(p));L))} × B[t]) List)
BY
{ (Auto
THEN (InstLemma `list-set-type` [⌜t:T × B[t]⌝;⌜L⌝]⋅ THENA Auto)
THEN (DoSubsume THEN Auto THEN SubtypeReasoning1 THEN Auto)⋅) }
1
1. T : Type
2. B : T ⟶ Type
3. L : (t:T × B[t]) List
4. L ∈ {x:t:T × B[t]| (x ∈ L)} List
5. L = L ∈ ({x:t:T × B[t]| (x ∈ L)} List)
⊢ {x:t:T × B[t]| (x ∈ L)} ⊆r (t:{t:T| (t ∈ map(λp.(fst(p));L))} × B[t])
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[B:T {}\mrightarrow{} Type]. \mforall{}[L:(t:T \mtimes{} B[t]) List]. (L \mmember{} (t:\{t:T| (t \mmember{} map(\mlambda{}p.(fst(p));L))\} \mtimes{} B[t])\000C List)
By
Latex:
(Auto
THEN (InstLemma `list-set-type` [\mkleeneopen{}t:T \mtimes{} B[t]\mkleeneclose{};\mkleeneopen{}L\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (DoSubsume THEN Auto THEN SubtypeReasoning1 THEN Auto)\mcdot{})
Home
Index