Nuprl Lemma : pair-list-set-type
∀[T:Type]. ∀[B:T ⟶ Type]. ∀[L:(t:T × B[t]) List].  (L ∈ (t:{t:T| (t ∈ map(λp.(fst(p));L))}  × B[t]) List)
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l)
, 
map: map(f;as)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
pi1: fst(t)
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
so_lambda: λ2x.t[x]
Lemmas referenced : 
list-set-type, 
subtype_rel_list, 
l_member_wf, 
map_wf, 
list-subtype, 
list_wf, 
member_map, 
l_member-settype, 
and_wf, 
equal_wf, 
pi1_wf_top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
hypothesisEquality, 
applyEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
setEquality, 
sqequalRule, 
cumulativity, 
because_Cache, 
productElimination, 
dependent_pairEquality, 
lambdaEquality, 
lambdaFormation, 
setElimination, 
rename, 
independent_isectElimination, 
axiomEquality, 
isect_memberEquality, 
functionEquality, 
universeEquality, 
dependent_set_memberEquality, 
dependent_functionElimination, 
independent_functionElimination, 
dependent_pairFormation, 
independent_pairFormation
Latex:
\mforall{}[T:Type].  \mforall{}[B:T  {}\mrightarrow{}  Type].  \mforall{}[L:(t:T  \mtimes{}  B[t])  List].    (L  \mmember{}  (t:\{t:T|  (t  \mmember{}  map(\mlambda{}p.(fst(p));L))\}    \mtimes{}  B[t])\000C  List)
Date html generated:
2016_05_15-PM-03_55_34
Last ObjectModification:
2015_12_27-PM-01_25_34
Theory : general
Home
Index