Nuprl Lemma : pair-list-set-type

[T:Type]. ∀[B:T ⟶ Type]. ∀[L:(t:T × B[t]) List].  (L ∈ (t:{t:T| (t ∈ map(λp.(fst(p));L))}  × B[t]) List)


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) map: map(f;as) list: List uall: [x:A]. B[x] so_apply: x[s] pi1: fst(t) member: t ∈ T set: {x:A| B[x]}  lambda: λx.A[x] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_apply: x[s] subtype_rel: A ⊆B prop: all: x:A. B[x] pi1: fst(t) uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q exists: x:A. B[x] cand: c∧ B so_lambda: λ2x.t[x]
Lemmas referenced :  list-set-type subtype_rel_list l_member_wf map_wf list-subtype list_wf member_map l_member-settype and_wf equal_wf pi1_wf_top
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin productEquality hypothesisEquality applyEquality equalityTransitivity hypothesis equalitySymmetry setEquality sqequalRule cumulativity because_Cache productElimination dependent_pairEquality lambdaEquality lambdaFormation setElimination rename independent_isectElimination axiomEquality isect_memberEquality functionEquality universeEquality dependent_set_memberEquality dependent_functionElimination independent_functionElimination dependent_pairFormation independent_pairFormation

Latex:
\mforall{}[T:Type].  \mforall{}[B:T  {}\mrightarrow{}  Type].  \mforall{}[L:(t:T  \mtimes{}  B[t])  List].    (L  \mmember{}  (t:\{t:T|  (t  \mmember{}  map(\mlambda{}p.(fst(p));L))\}    \mtimes{}  B[t])\000C  List)



Date html generated: 2016_05_15-PM-03_55_34
Last ObjectModification: 2015_12_27-PM-01_25_34

Theory : general


Home Index