Step
*
2
2
of Lemma
polymorphic-id-unique-sq
1. ∀f:Base. ((f ∈ ⋂T:Type. (T ⟶ T))
⇒ (f ~ λx.x))
2. a : Base
3. b : Base
4. c : a = b ∈ (⋂T:Type. (T ⟶ T))
⊢ (a ~ λx.x) = (b ~ λx.x) ∈ Type
BY
{ (Refine `sqequalExtensionalEquality` [] THEN D 0 THEN Auto) }
Latex:
Latex:
1. \mforall{}f:Base. ((f \mmember{} \mcap{}T:Type. (T {}\mrightarrow{} T)) {}\mRightarrow{} (f \msim{} \mlambda{}x.x))
2. a : Base
3. b : Base
4. c : a = b
\mvdash{} (a \msim{} \mlambda{}x.x) = (b \msim{} \mlambda{}x.x)
By
Latex:
(Refine `sqequalExtensionalEquality` [] THEN D 0 THEN Auto)
Home
Index