Nuprl Lemma : polymorphic-id-unique-sq
∀f:⋂T:Type. (T ⟶ T). (f ~ λx.x)
Proof
Definitions occuring in Statement :
all: ∀x:A. B[x]
,
lambda: λx.A[x]
,
isect: ⋂x:A. B[x]
,
function: x:A ⟶ B[x]
,
universe: Type
,
sqequal: s ~ t
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
has-value: (a)↓
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
guard: {T}
,
or: P ∨ Q
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
sq_type: SQType(T)
,
it: ⋅
,
false: False
,
top: Top
,
unit: Unit
,
not: ¬A
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
squash: ↓T
Lemmas referenced :
value-type-has-value,
int-value-type,
equal-wf-base,
base_wf,
set_wf,
subtype_base_sq,
set_subtype_base,
subtype_rel_self,
equal_wf,
has-value_wf_base,
is-exception_wf,
unit_wf2,
it_wf,
unit_subtype_base,
equal-unit,
bottom-sqle,
equal-value-type,
bottom_diverge
Rules used in proof :
cut,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
callbyvalueApplyCases,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
intEquality,
independent_isectElimination,
hypothesis,
applyEquality,
equalityTransitivity,
equalitySymmetry,
lambdaEquality,
isectEquality,
universeEquality,
cumulativity,
functionEquality,
hypothesisEquality,
sqequalRule,
natural_numberEquality,
unionElimination,
instantiate,
because_Cache,
setEquality,
functionExtensionality,
dependent_set_memberEquality,
setElimination,
rename,
addLevel,
levelHypothesis,
dependent_functionElimination,
independent_functionElimination,
baseClosed,
axiomSqleEquality,
divergentSqle,
sqleReflexivity,
voidElimination,
sqequalSqle,
isect_memberEquality,
voidEquality,
pointwiseFunctionality,
sqequalAxiom,
sqequalExtensionalEquality,
independent_pairFormation,
sqequalIntensionalEquality,
imageMemberEquality
Latex:
\mforall{}f:\mcap{}T:Type. (T {}\mrightarrow{} T). (f \msim{} \mlambda{}x.x)
Date html generated:
2017_10_01-AM-09_07_17
Last ObjectModification:
2017_07_26-PM-04_46_45
Theory : general
Home
Index