Nuprl Lemma : polymorphic-id-unique-sq

f:⋂T:Type. (T ⟶ T). (f ~ λx.x)


Proof




Definitions occuring in Statement :  all: x:A. B[x] lambda: λx.A[x] isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q has-value: (a)↓ uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B guard: {T} or: P ∨ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) it: false: False top: Top unit: Unit not: ¬A iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q squash: T
Lemmas referenced :  value-type-has-value int-value-type equal-wf-base base_wf set_wf subtype_base_sq set_subtype_base subtype_rel_self equal_wf has-value_wf_base is-exception_wf unit_wf2 it_wf unit_subtype_base equal-unit bottom-sqle equal-value-type bottom_diverge
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation callbyvalueApplyCases introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality independent_isectElimination hypothesis applyEquality equalityTransitivity equalitySymmetry lambdaEquality isectEquality universeEquality cumulativity functionEquality hypothesisEquality sqequalRule natural_numberEquality unionElimination instantiate because_Cache setEquality functionExtensionality dependent_set_memberEquality setElimination rename addLevel levelHypothesis dependent_functionElimination independent_functionElimination baseClosed axiomSqleEquality divergentSqle sqleReflexivity voidElimination sqequalSqle isect_memberEquality voidEquality pointwiseFunctionality sqequalAxiom sqequalExtensionalEquality independent_pairFormation sqequalIntensionalEquality imageMemberEquality

Latex:
\mforall{}f:\mcap{}T:Type.  (T  {}\mrightarrow{}  T).  (f  \msim{}  \mlambda{}x.x)



Date html generated: 2017_10_01-AM-09_07_17
Last ObjectModification: 2017_07_26-PM-04_46_45

Theory : general


Home Index