Step
*
1
1
1
2
1
of Lemma
prime-factors-unique
1. u : {m:ℕ| prime(m)} @i
2. v : {m:ℕ| prime(m)} List@i
3. (1 = reduce(λx,y. (x * y);1;v) ∈ ℤ)
⇒ permutation(ℤ;[];v)
4. 1 = (u * reduce(λx,y. (x * y);1;v)) ∈ ℤ
⊢ permutation(ℤ;[];[u / v])
BY
{ Assert ⌜u | 1⌝⋅ }
1
.....assertion.....
1. u : {m:ℕ| prime(m)} @i
2. v : {m:ℕ| prime(m)} List@i
3. (1 = reduce(λx,y. (x * y);1;v) ∈ ℤ)
⇒ permutation(ℤ;[];v)
4. 1 = (u * reduce(λx,y. (x * y);1;v)) ∈ ℤ
⊢ u | 1
2
1. u : {m:ℕ| prime(m)} @i
2. v : {m:ℕ| prime(m)} List@i
3. (1 = reduce(λx,y. (x * y);1;v) ∈ ℤ)
⇒ permutation(ℤ;[];v)
4. 1 = (u * reduce(λx,y. (x * y);1;v)) ∈ ℤ
5. u | 1
⊢ permutation(ℤ;[];[u / v])
Latex:
Latex:
1. u : \{m:\mBbbN{}| prime(m)\} @i
2. v : \{m:\mBbbN{}| prime(m)\} List@i
3. (1 = reduce(\mlambda{}x,y. (x * y);1;v)) {}\mRightarrow{} permutation(\mBbbZ{};[];v)
4. 1 = (u * reduce(\mlambda{}x,y. (x * y);1;v))
\mvdash{} permutation(\mBbbZ{};[];[u / v])
By
Latex:
Assert \mkleeneopen{}u | 1\mkleeneclose{}\mcdot{}
Home
Index