Nuprl Lemma : prob2.1
∀[U:Type]. ∀[P:U ⟶ ℙ]. ∀x:U. ((P x)
⇒ (∃x:U. (P x)))
Proof
Definitions occuring in Statement :
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
implies: P
⇒ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
exists: ∃x:A. B[x]
,
member: t ∈ T
,
prop: ℙ
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
dependent_pairFormation,
hypothesisEquality,
hypothesis,
applyEquality,
functionEquality,
cumulativity,
universeEquality
Latex:
\mforall{}[U:Type]. \mforall{}[P:U {}\mrightarrow{} \mBbbP{}]. \mforall{}x:U. ((P x) {}\mRightarrow{} (\mexists{}x:U. (P x)))
Date html generated:
2016_05_15-PM-07_43_01
Last ObjectModification:
2015_12_27-AM-11_12_50
Theory : general
Home
Index