Nuprl Lemma : prob2.1
∀[U:Type]. ∀[P:U ⟶ ℙ].  ∀x:U. ((P x) 
⇒ (∃x:U. (P x)))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
dependent_pairFormation, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[U:Type].  \mforall{}[P:U  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x:U.  ((P  x)  {}\mRightarrow{}  (\mexists{}x:U.  (P  x)))
Date html generated:
2016_05_15-PM-07_43_01
Last ObjectModification:
2015_12_27-AM-11_12_50
Theory : general
Home
Index