Nuprl Lemma : prob2.1

[U:Type]. ∀[P:U ⟶ ℙ].  ∀x:U. ((P x)  (∃x:U. (P x)))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: all: x:A. B[x] exists: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T prop:
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation dependent_pairFormation hypothesisEquality hypothesis applyEquality functionEquality cumulativity universeEquality

Latex:
\mforall{}[U:Type].  \mforall{}[P:U  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x:U.  ((P  x)  {}\mRightarrow{}  (\mexists{}x:U.  (P  x)))



Date html generated: 2016_05_15-PM-07_43_01
Last ObjectModification: 2015_12_27-AM-11_12_50

Theory : general


Home Index