Step
*
2
of Lemma
proper-divisor_wf
1. n : ℕ+
2. y : Top
⊢ if n <z 5 then if (n =z 4) then inl 2 else inr (λx.any x) fi
if n <z 16 then proper-divisor-aux(n;2;2;1;2)
if n <z 81 then proper-divisor-aux(n;3;3;1;3)
else eval m = iroot(4;n) + 1 in
proper-divisor-aux(n;m;m;1;m)
fi ∈ Dec(∃n1:ℤ [(n1 < n ∧ (2 ≤ n1) ∧ (n1 | n))])
BY
{ RepeatFor 2 (OldAutoSplit)⋅ }
1
1. n : ℕ+
2. y : Top
3. n < 5
4. n = 4 ∈ ℤ
⊢ inl 2 ∈ Dec(∃n1:ℤ [(n1 < n ∧ (2 ≤ n1) ∧ (n1 | n))])
2
1. n : ℕ+
2. y : Top
3. n < 5
4. ¬(n = 4 ∈ ℤ)
⊢ inr (λx.any x) ∈ Dec(∃n1:ℤ [(n1 < n ∧ (2 ≤ n1) ∧ (n1 | n))])
3
1. n : ℕ+
2. y : Top
3. 5 ≤ n
4. 16 ≤ n
⊢ if n <z 81 then proper-divisor-aux(n;3;3;1;3) else eval m = iroot(4;n) + 1 in proper-divisor-aux(n;m;m;1;m) fi
∈ Dec(∃n1:ℤ [(n1 < n ∧ (2 ≤ n1) ∧ (n1 | n))])
Latex:
Latex:
1. n : \mBbbN{}\msupplus{}
2. y : Top
\mvdash{} if n <z 5 then if (n =\msubz{} 4) then inl 2 else inr (\mlambda{}x.any x) fi
if n <z 16 then proper-divisor-aux(n;2;2;1;2)
if n <z 81 then proper-divisor-aux(n;3;3;1;3)
else eval m = iroot(4;n) + 1 in
proper-divisor-aux(n;m;m;1;m)
fi \mmember{} Dec(\mexists{}n1:\mBbbZ{} [(n1 < n \mwedge{} (2 \mleq{} n1) \mwedge{} (n1 | n))])
By
Latex:
RepeatFor 2 (OldAutoSplit)\mcdot{}
Home
Index