Nuprl Lemma : proper-divisor_wf
∀[n:ℕ+]. (proper-divisor(n) ∈ Dec(∃n1:ℤ [(n1 < n ∧ (2 ≤ n1) ∧ (n1 | n))]))
Proof
Definitions occuring in Statement : 
proper-divisor: proper-divisor(n)
, 
divides: b | a
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
sq_exists: ∃x:A [B[x]]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
proper-divisor: proper-divisor(n)
, 
int_upper: {i...}
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
nat_plus: ℕ+
, 
so_apply: x[s]
, 
sq_exists: ∃x:A [B[x]]
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
nat: ℕ
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
cand: A c∧ B
, 
divides: b | a
, 
subtype_rel: A ⊆r B
, 
sq_type: SQType(T)
, 
int_nzero: ℤ-o
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
has-value: (a)↓
, 
less_than: a < b
, 
squash: ↓T
, 
ge: i ≥ j 
, 
exp: i^n
, 
eq_int: (i =z j)
, 
subtract: n - m
Lemmas referenced : 
trial-division_wf, 
cons_wf, 
int_upper_wf, 
false_wf, 
le_wf, 
nil_wf, 
sq_exists_wf, 
less_than_wf, 
divides_wf, 
top_wf, 
equal_wf, 
nat_plus_wf, 
not_wf, 
lt_int_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-T-base, 
assert_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eq_int_wf, 
assert_of_eq_int, 
iff_transitivity, 
bnot_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
le_int_wf, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
proper-divisor-aux_wf, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
itermMultiply_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
intformle_wf, 
int_formula_prop_le_lemma, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
decidable__equal_int, 
int_subtype_base, 
set_wf, 
subtype_base_sq, 
equal-wf-base, 
divides_iff_div_exact, 
true_wf, 
nequal_wf, 
value-type-has-value, 
iroot-property, 
nat_plus_subtype_nat, 
decidable__le, 
iroot_wf, 
nat_wf, 
nat_properties, 
decidable__or, 
or_wf, 
intformor_wf, 
int_formula_prop_or_lemma, 
primrec-unroll, 
primrec1_lemma, 
itermAdd_wf, 
int_term_value_add_lemma, 
exp_wf2, 
mul-distributes, 
mul-distributes-right, 
add-associates, 
mul-commutes, 
mul-swap, 
one-mul, 
add-swap, 
add-commutes, 
two-mul, 
mul_preserves_lt, 
not-lt-2, 
less-iff-le, 
add_functionality_wrt_le, 
zero-add, 
le-add-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
dependent_set_memberEquality, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
because_Cache, 
unionEquality, 
intEquality, 
lambdaEquality, 
productEquality, 
setElimination, 
rename, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
inlEquality, 
equalityElimination, 
baseClosed, 
productElimination, 
independent_isectElimination, 
impliesFunctionality, 
multiplyEquality, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
baseApply, 
closedConclusion, 
applyEquality, 
inrEquality, 
setEquality, 
instantiate, 
cumulativity, 
promote_hyp, 
addLevel, 
callbyvalueReduce, 
imageMemberEquality, 
applyLambdaEquality, 
addEquality, 
imageElimination
Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  (proper-divisor(n)  \mmember{}  Dec(\mexists{}n1:\mBbbZ{}  [(n1  <  n  \mwedge{}  (2  \mleq{}  n1)  \mwedge{}  (n1  |  n))]))
Date html generated:
2018_05_21-PM-08_16_08
Last ObjectModification:
2017_07_26-PM-05_50_20
Theory : general
Home
Index