Nuprl Lemma : proper-divisor_wf

[n:ℕ+]. (proper-divisor(n) ∈ Dec(∃n1:ℤ [(n1 < n ∧ (2 ≤ n1) ∧ (n1 n))]))


Proof




Definitions occuring in Statement :  proper-divisor: proper-divisor(n) divides: a nat_plus: + less_than: a < b decidable: Dec(P) uall: [x:A]. B[x] le: A ≤ B sq_exists: x:A [B[x]] and: P ∧ Q member: t ∈ T natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T proper-divisor: proper-divisor(n) int_upper: {i...} le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: so_lambda: λ2x.t[x] nat_plus: + so_apply: x[s] sq_exists: x:A [B[x]] all: x:A. B[x] decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q guard: {T} nat: satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top cand: c∧ B divides: a subtype_rel: A ⊆B sq_type: SQType(T) int_nzero: -o true: True nequal: a ≠ b ∈  has-value: (a)↓ less_than: a < b squash: T ge: i ≥  exp: i^n eq_int: (i =z j) subtract: m
Lemmas referenced :  trial-division_wf cons_wf int_upper_wf false_wf le_wf nil_wf sq_exists_wf less_than_wf divides_wf top_wf equal_wf nat_plus_wf not_wf lt_int_wf bool_wf uiff_transitivity equal-wf-T-base assert_wf eqtt_to_assert assert_of_lt_int eq_int_wf assert_of_eq_int iff_transitivity bnot_wf iff_weakening_uiff eqff_to_assert assert_of_bnot le_int_wf assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int proper-divisor-aux_wf nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf itermMultiply_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_formula_prop_wf intformle_wf int_formula_prop_le_lemma intformeq_wf int_formula_prop_eq_lemma decidable__equal_int int_subtype_base set_wf subtype_base_sq equal-wf-base divides_iff_div_exact true_wf nequal_wf value-type-has-value iroot-property nat_plus_subtype_nat decidable__le iroot_wf nat_wf nat_properties decidable__or or_wf intformor_wf int_formula_prop_or_lemma primrec-unroll primrec1_lemma itermAdd_wf int_term_value_add_lemma exp_wf2 mul-distributes mul-distributes-right add-associates mul-commutes mul-swap one-mul add-swap add-commutes two-mul mul_preserves_lt not-lt-2 less-iff-le add_functionality_wrt_le zero-add le-add-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality hypothesis dependent_set_memberEquality sqequalRule independent_pairFormation lambdaFormation because_Cache unionEquality intEquality lambdaEquality productEquality setElimination rename unionElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination axiomEquality inlEquality equalityElimination baseClosed productElimination independent_isectElimination impliesFunctionality multiplyEquality dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll baseApply closedConclusion applyEquality inrEquality setEquality instantiate cumulativity promote_hyp addLevel callbyvalueReduce imageMemberEquality applyLambdaEquality addEquality imageElimination

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  (proper-divisor(n)  \mmember{}  Dec(\mexists{}n1:\mBbbZ{}  [(n1  <  n  \mwedge{}  (2  \mleq{}  n1)  \mwedge{}  (n1  |  n))]))



Date html generated: 2018_05_21-PM-08_16_08
Last ObjectModification: 2017_07_26-PM-05_50_20

Theory : general


Home Index