Nuprl Lemma : trial-division_wf

[n:ℕ+]. ∀[L:{2...} List].  (trial-division(n;L) ∈ ∃n1:ℤ [(n1 < n ∧ (2 ≤ n1) ∧ (n1 n))] Top)


Proof




Definitions occuring in Statement :  trial-division: trial-division(n;L) divides: a list: List int_upper: {i...} nat_plus: + less_than: a < b uall: [x:A]. B[x] top: Top le: A ≤ B sq_exists: x:A [B[x]] and: P ∧ Q member: t ∈ T union: left right natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q trial-division: trial-division(n;L) list_ind: list_ind nil: [] it: so_lambda: λ2x.t[x] nat_plus: + so_apply: x[s] sq_exists: x:A [B[x]] cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] int_upper: {i...} bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  has-value: (a)↓ bfalse: ff bnot: ¬bb assert: b cand: c∧ B le: A ≤ B iff: ⇐⇒ Q rev_implies:  Q true: True
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list int_upper_wf less_than_transitivity1 less_than_irreflexivity list-cases sq_exists_wf le_wf divides_wf product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int list_ind_cons_lemma top_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int value-type-has-value eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot list_wf nat_plus_wf gcd_wf int_upper_properties nat_plus_properties gcd_is_divisor_2 better-gcd-gcd divisor_bound decidable__lt false_wf not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel gcd_is_divisor_1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry applyEquality because_Cache unionElimination inrEquality productEquality promote_hyp hypothesis_subsumption productElimination applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate cumulativity imageElimination unionEquality equalityElimination callbyvalueReduce inlEquality

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[L:\{2...\}  List].    (trial-division(n;L)  \mmember{}  \mexists{}n1:\mBbbZ{}  [(n1  <  n  \mwedge{}  (2  \mleq{}  n1)  \mwedge{}  (n1  |  n))]  +  Top)



Date html generated: 2018_05_21-PM-08_15_50
Last ObjectModification: 2017_07_26-PM-05_50_06

Theory : general


Home Index