Step
*
1
2
1
of Lemma
rel-immediate-preserves-order
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. ∀a,b,c:T.  ((R a b) 
⇒ (R b c) 
⇒ (R a c))
4. sum_of_torder(T;R)
5. x : T
6. y : T
7. x' : T
8. y' : T
9. R x y
10. R x' x
11. ∀z:T. (¬((R x' z) ∧ (R z x)))
12. R y' y
13. ∀z:T. (¬((R y' z) ∧ (R z y)))
14. R x y'
⊢ R x' y'
BY
{ (InstHyp [⌜x'⌝;⌜x⌝;⌜y'⌝] 3⋅ THEN Auto) }
Latex:
Latex:
1.  [T]  :  Type
2.  [R]  :  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}
3.  \mforall{}a,b,c:T.    ((R  a  b)  {}\mRightarrow{}  (R  b  c)  {}\mRightarrow{}  (R  a  c))
4.  sum\_of\_torder(T;R)
5.  x  :  T
6.  y  :  T
7.  x'  :  T
8.  y'  :  T
9.  R  x  y
10.  R  x'  x
11.  \mforall{}z:T.  (\mneg{}((R  x'  z)  \mwedge{}  (R  z  x)))
12.  R  y'  y
13.  \mforall{}z:T.  (\mneg{}((R  y'  z)  \mwedge{}  (R  z  y)))
14.  R  x  y'
\mvdash{}  R  x'  y'
By
Latex:
(InstHyp  [\mkleeneopen{}x'\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}y'\mkleeneclose{}]  3\mcdot{}  THEN  Auto)
Home
Index