Nuprl Lemma : rel-immediate-preserves-order
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  (Trans(T;x,y.R x y) 
⇒ sum_of_torder(T;R) 
⇒ (∀x,y,x',y':T.  ((R x y) 
⇒ (R! x' x) 
⇒ (R! y' y) 
⇒ (R x' y'))))
Proof
Definitions occuring in Statement : 
sum_of_torder: sum_of_torder(T;R)
, 
rel-immediate: R!
, 
trans: Trans(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
trans: Trans(T;x,y.E[x; y])
, 
rel-immediate: R!
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
or: P ∨ Q
Lemmas referenced : 
rel-immediate_wf, 
sum_of_torder_wf, 
trans_wf, 
rel-immediate-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
applyEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
functionExtensionality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
universeEquality, 
independent_functionElimination, 
dependent_functionElimination, 
productElimination, 
unionElimination, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (Trans(T;x,y.R  x  y)
    {}\mRightarrow{}  sum\_of\_torder(T;R)
    {}\mRightarrow{}  (\mforall{}x,y,x',y':T.    ((R  x  y)  {}\mRightarrow{}  (R!  x'  x)  {}\mRightarrow{}  (R!  y'  y)  {}\mRightarrow{}  (R  x'  y'))))
Date html generated:
2016_10_25-AM-11_01_30
Last ObjectModification:
2016_07_12-AM-07_08_11
Theory : general
Home
Index