Nuprl Lemma : rel-immediate-preserves-order

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  (Trans(T;x,y.R y)  sum_of_torder(T;R)  (∀x,y,x',y':T.  ((R y)  (R! x' x)  (R! y' y)  (R x' y'))))


Proof




Definitions occuring in Statement :  sum_of_torder: sum_of_torder(T;R) rel-immediate: R! trans: Trans(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] trans: Trans(T;x,y.E[x; y]) rel-immediate: R! and: P ∧ Q cand: c∧ B or: P ∨ Q
Lemmas referenced :  rel-immediate_wf sum_of_torder_wf trans_wf rel-immediate-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation applyEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality functionExtensionality hypothesis sqequalRule lambdaEquality functionEquality universeEquality independent_functionElimination dependent_functionElimination productElimination unionElimination equalitySymmetry hyp_replacement Error :applyLambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (Trans(T;x,y.R  x  y)
    {}\mRightarrow{}  sum\_of\_torder(T;R)
    {}\mRightarrow{}  (\mforall{}x,y,x',y':T.    ((R  x  y)  {}\mRightarrow{}  (R!  x'  x)  {}\mRightarrow{}  (R!  y'  y)  {}\mRightarrow{}  (R  x'  y'))))



Date html generated: 2016_10_25-AM-11_01_30
Last ObjectModification: 2016_07_12-AM-07_08_11

Theory : general


Home Index