Nuprl Lemma : rel-immediate_wf

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (R! ∈ T ⟶ T ⟶ ℙ)


Proof




Definitions occuring in Statement :  rel-immediate: R! uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rel-immediate: R! so_lambda: λ2x.t[x] so_apply: x[s] prop:
Lemmas referenced :  and_wf all_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality sqequalRule hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (R!  \mmember{}  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2016_05_15-PM-04_53_09
Last ObjectModification: 2015_12_27-PM-02_32_16

Theory : general


Home Index