Nuprl Lemma : sum_of_torder_wf

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (sum_of_torder(T;R) ∈ ℙ)


Proof




Definitions occuring in Statement :  sum_of_torder: sum_of_torder(T;R) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  sum_of_torder: sum_of_torder(T;R) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: and: P ∧ Q subtype_rel: A ⊆B or: P ∨ Q so_apply: x[s]
Lemmas referenced :  all_wf or_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality lambdaEquality because_Cache functionEquality productEquality applyEquality hypothesis universeEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (sum\_of\_torder(T;R)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-04_55_04
Last ObjectModification: 2015_12_27-PM-02_31_29

Theory : general


Home Index