Nuprl Lemma : rel-immediate_functionality_wrt_breqv
∀[T:Type]. ∀[R,Q:T ⟶ T ⟶ ℙ].  ((R <≡>{T} Q) 
⇒ (R! <≡>{T} Q!))
Proof
Definitions occuring in Statement : 
rel-immediate: R!
, 
binrel_eqv: E <≡>{T} E'
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
binrel_eqv: E <≡>{T} E'
Lemmas referenced : 
rel-immediate_functionality_wrt_iff
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
hypothesis
Latex:
\mforall{}[T:Type].  \mforall{}[R,Q:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    ((R  <\mequiv{}>\{T\}  Q)  {}\mRightarrow{}  (R!  <\mequiv{}>\{T\}  Q!))
Date html generated:
2016_05_15-PM-04_53_36
Last ObjectModification:
2015_12_27-PM-02_31_58
Theory : general
Home
Index