Nuprl Lemma : rel-immediate_functionality_wrt_iff

[T:Type]. ∀[R,Q:T ⟶ T ⟶ ℙ].  ((∀x,y:T.  (R ⇐⇒ y))  (∀x,y:T.  (R! ⇐⇒ Q! y)))


Proof




Definitions occuring in Statement :  rel-immediate: R! uall: [x:A]. B[x] prop: all: x:A. B[x] iff: ⇐⇒ Q implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  rel-immediate: R! uall: [x:A]. B[x] implies:  Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q not: ¬A false: False member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q guard: {T} subtype_rel: A ⊆B
Lemmas referenced :  and_wf all_wf not_wf iff_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation independent_pairFormation sqequalHypSubstitution productElimination thin cut hypothesis independent_functionElimination voidElimination lemma_by_obid isectElimination applyEquality hypothesisEquality lambdaEquality functionEquality cumulativity universeEquality dependent_functionElimination addLevel allFunctionality impliesFunctionality because_Cache andLevelFunctionality levelHypothesis promote_hyp allLevelFunctionality impliesLevelFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[R,Q:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x,y:T.    (R  x  y  \mLeftarrow{}{}\mRightarrow{}  Q  x  y))  {}\mRightarrow{}  (\mforall{}x,y:T.    (R!  x  y  \mLeftarrow{}{}\mRightarrow{}  Q!  x  y)))



Date html generated: 2016_05_15-PM-04_53_27
Last ObjectModification: 2015_12_27-PM-02_32_23

Theory : general


Home Index