Step
*
1
of Lemma
residue-mul-assoc
1. n : ℕ+
2. a : {i:ℤ| CoPrime(n,i)}
3. b : {i:ℤ| CoPrime(n,i)}
4. c : {i:ℤ| CoPrime(n,i)}
⊢ (((a * b) mod n) * c) ≡ (a * ((b * c) mod n)) mod n
BY
{ ((InstLemma `mod-eqmod` [⌜a⌝;⌜n⌝]⋅ THENA Auto)
THEN ((InstLemma `mod-eqmod` [⌜b⌝;⌜n⌝]⋅ THENA Auto) THEN (InstLemma `mod-eqmod` [⌜c⌝;⌜n⌝]⋅ THENA Auto))
) }
1
1. n : ℕ+
2. a : {i:ℤ| CoPrime(n,i)}
3. b : {i:ℤ| CoPrime(n,i)}
4. c : {i:ℤ| CoPrime(n,i)}
5. (a mod n) ≡ a mod n
6. (b mod n) ≡ b mod n
7. (c mod n) ≡ c mod n
⊢ (((a * b) mod n) * c) ≡ (a * ((b * c) mod n)) mod n
Latex:
Latex:
1. n : \mBbbN{}\msupplus{}
2. a : \{i:\mBbbZ{}| CoPrime(n,i)\}
3. b : \{i:\mBbbZ{}| CoPrime(n,i)\}
4. c : \{i:\mBbbZ{}| CoPrime(n,i)\}
\mvdash{} (((a * b) mod n) * c) \mequiv{} (a * ((b * c) mod n)) mod n
By
Latex:
((InstLemma `mod-eqmod` [\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}n\mkleeneclose{}]\mcdot{} THENA Auto)
THEN ((InstLemma `mod-eqmod` [\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}n\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (InstLemma `mod-eqmod` [\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}n\mkleeneclose{}]\mcdot{} THENA Auto)
)
)
Home
Index