Nuprl Lemma : residue-mul-assoc

[n:ℕ+]. ∀[a,b,c:{i:ℤCoPrime(n,i)} ].  (((ab mod n)c mod n) (a(bc mod n) mod n) ∈ ℤ)


Proof




Definitions occuring in Statement :  residue-mul: (ai mod n) coprime: CoPrime(a,b) nat_plus: + uall: [x:A]. B[x] set: {x:A| B[x]}  int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T residue-mul: (ai mod n) all: x:A. B[x] subtype_rel: A ⊆B nat_plus: + iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top
Lemmas referenced :  int_formula_prop_wf int_term_value_var_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermVar_wf itermMultiply_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt decidable__equal_int nat_plus_properties eqmod_inversion multiply_functionality_wrt_eqmod eqmod_weakening eqmod_functionality_wrt_eqmod int_mod_wf subtype_rel_set mod-eqmod coprime_wf set_wf int-subtype-int_mod modulus_wf_int_mod modulus-equal-iff-eqmod
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin multiplyEquality isectElimination hypothesisEquality setElimination rename hypothesis applyEquality sqequalRule because_Cache productElimination independent_functionElimination intEquality lambdaEquality isect_memberEquality axiomEquality independent_isectElimination unionElimination natural_numberEquality dependent_pairFormation int_eqEquality voidElimination voidEquality computeAll

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[a,b,c:\{i:\mBbbZ{}|  CoPrime(n,i)\}  ].    (((ab  mod  n)c  mod  n)  =  (a(bc  mod  n)  mod  n))



Date html generated: 2016_05_15-PM-07_29_53
Last ObjectModification: 2016_01_16-AM-09_39_59

Theory : general


Home Index