Step
*
of Lemma
retraction-fun-path
∀[T:Type]
∀f:T ⟶ T. ∀h:T ⟶ ℕ.
((∀x:T. (((f x) = x ∈ T) ∨ h (f x) < h x))
⇒ (∀L:T List. ∀x,y:T. (x = y ∈ T) ∨ h y < h x supposing y=f*(x) via L))
BY
{ (InductionOnList THEN Auto) }
1
1. [T] : Type
2. f : T ⟶ T
3. h : T ⟶ ℕ
4. ∀x:T. (((f x) = x ∈ T) ∨ h (f x) < h x)
5. x : T
6. y : T
7. y=f*(x) via []
⊢ (x = y ∈ T) ∨ h y < h x
2
1. [T] : Type
2. f : T ⟶ T
3. h : T ⟶ ℕ
4. ∀x:T. (((f x) = x ∈ T) ∨ h (f x) < h x)
5. u : T
6. v : T List
7. ∀x,y:T. (x = y ∈ T) ∨ h y < h x supposing y=f*(x) via v
8. x : T
9. y : T
10. y=f*(x) via [u / v]
⊢ (x = y ∈ T) ∨ h y < h x
Latex:
Latex:
\mforall{}[T:Type]
\mforall{}f:T {}\mrightarrow{} T. \mforall{}h:T {}\mrightarrow{} \mBbbN{}.
((\mforall{}x:T. (((f x) = x) \mvee{} h (f x) < h x))
{}\mRightarrow{} (\mforall{}L:T List. \mforall{}x,y:T. (x = y) \mvee{} h y < h x supposing y=f*(x) via L))
By
Latex:
(InductionOnList THEN Auto)
Home
Index