Nuprl Lemma : retraction-fun-path

[T:Type]
  ∀f:T ⟶ T. ∀h:T ⟶ ℕ.
    ((∀x:T. (((f x) x ∈ T) ∨ (f x) < x))  (∀L:T List. ∀x,y:T.  (x y ∈ T) ∨ y < supposing y=f*(x) via L))


Proof




Definitions occuring in Statement :  fun-path: y=f*(x) via L list: List nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q or: P ∨ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] uimplies: supposing a prop: subtype_rel: A ⊆B so_apply: x[s] fun-path: y=f*(x) via L and: P ∧ Q less_than: a < b squash: T less_than': less_than'(a;b) length: ||as|| list_ind: list_ind nil: [] it: false: False not: ¬A int_seg: {i..j-} top: Top guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] uiff: uiff(P;Q) nat: select: L[n] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtract: m true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  list_induction all_wf isect_wf fun-path_wf or_wf equal_wf less_than_wf list_wf member-less_than nil_wf length_wf cons_wf select_wf length_of_cons_lemma int_seg_properties subtract_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt add-is-int-iff intformless_wf itermSubtract_wf int_formula_prop_less_lemma int_term_value_subtract_lemma false_wf int_seg_wf nat_wf length_of_nil_lemma stuck-spread base_wf fun-path-cons squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity because_Cache functionExtensionality applyEquality hypothesis independent_functionElimination productElimination independent_pairEquality imageElimination voidElimination independent_isectElimination axiomEquality dependent_functionElimination rename natural_numberEquality equalityTransitivity equalitySymmetry addEquality setElimination isect_memberEquality voidEquality unionElimination dependent_pairFormation int_eqEquality intEquality independent_pairFormation computeAll pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed functionEquality universeEquality inlFormation hyp_replacement applyLambdaEquality inrFormation imageMemberEquality

Latex:
\mforall{}[T:Type]
    \mforall{}f:T  {}\mrightarrow{}  T.  \mforall{}h:T  {}\mrightarrow{}  \mBbbN{}.
        ((\mforall{}x:T.  (((f  x)  =  x)  \mvee{}  h  (f  x)  <  h  x))
        {}\mRightarrow{}  (\mforall{}L:T  List.  \mforall{}x,y:T.    (x  =  y)  \mvee{}  h  y  <  h  x  supposing  y=f*(x)  via  L))



Date html generated: 2018_05_21-PM-07_46_34
Last ObjectModification: 2017_07_26-PM-05_24_00

Theory : general


Home Index