Step
*
of Lemma
sparse-signed-rep-lemma1-ext
∀m:ℤ. (∃p:ℤ × {-2..3-} [let k,b = p in (m = ((4 * k) + b) ∈ ℤ) ∧ ((|b| = 2 ∈ ℤ)
⇒ (↑isEven(k)))])
BY
{ Extract of Obid: sparse-signed-rep-lemma1
not unfolding remainder
finishing with Auto
normalizes to:
λm.eval qr = divrem(m; 4) in
let q1,q2 = qr
in if q2=3
then <q1 + 1, -1>
else if q2=-3
then <q1 - 1, 1>
else eval x = q1 rem 2 in
if (x) < (0)
then if 2 + x=0
then <q1, q2>
else if q2=2 then <q1 + 1, -2> else if q2=-2 then <q1 - 1, 2> else <q1, q2>
else if x=0
then <q1, q2>
else if q2=2 then <q1 + 1, -2> else if q2=-2 then <q1 - 1, 2> else <q1, q2> }
Latex:
Latex:
\mforall{}m:\mBbbZ{}. (\mexists{}p:\mBbbZ{} \mtimes{} \{-2..3\msupminus{}\} [let k,b = p in (m = ((4 * k) + b)) \mwedge{} ((|b| = 2) {}\mRightarrow{} (\muparrow{}isEven(k)))])
By
Latex:
Extract of Obid: sparse-signed-rep-lemma1
not unfolding remainder
finishing with Auto
normalizes to:
\mlambda{}m.eval qr = divrem(m; 4) in
let q1,q2 = qr
in if q2=3
then <q1 + 1, -1>
else if q2=-3
then <q1 - 1, 1>
else eval x = q1 rem 2 in
if (x) < (0)
then if 2 + x=0
then <q1, q2>
else if q2=2 then <q1 + 1, -2> else if q2=-2 then <q1 - 1, 2> else <q1, q2>
else if x=0
then <q1, q2>
else if q2=2 then <q1 + 1, -2> else if q2=-2 then <q1 - 1, 2> else <q1, q2>
Home
Index