Nuprl Lemma : sparse-signed-rep-lemma1-ext

m:ℤ(∃p:ℤ × {-2..3-[let k,b in (m ((4 k) b) ∈ ℤ) ∧ ((|b| 2 ∈ ℤ (↑isEven(k)))])


Proof




Definitions occuring in Statement :  isEven: isEven(n) absval: |i| int_seg: {i..j-} assert: b all: x:A. B[x] sq_exists: x:A [B[x]] implies:  Q and: P ∧ Q spread: spread def product: x:A × B[x] multiply: m add: m minus: -n natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T subtract: m isEven: isEven(n) eq_int: (i =z j) modulus: mod n absval: |i| btrue: tt it: bfalse: ff sparse-signed-rep-lemma1 decidable__equal_int decidable__assert decidable__int_equal uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: or: P ∨ Q squash: T
Lemmas referenced :  sparse-signed-rep-lemma1 lifting-strict-int_eq istype-void strict4-decide lifting-strict-decide lifting-strict-callbyvalue value-type-has-value int-value-type has-value_wf_base istype-base is-exception_wf istype-universe lifting-strict-less decidable__equal_int decidable__assert decidable__int_equal
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed isect_memberEquality_alt voidElimination independent_isectElimination independent_pairFormation lambdaFormation_alt callbyvalueIntEq baseApply closedConclusion hypothesisEquality productElimination intEquality universeIsType int_eqExceptionCases inrFormation_alt imageMemberEquality imageElimination exceptionSqequal inlFormation_alt

Latex:
\mforall{}m:\mBbbZ{}.  (\mexists{}p:\mBbbZ{}  \mtimes{}  \{-2..3\msupminus{}\}  [let  k,b  =  p  in  (m  =  ((4  *  k)  +  b))  \mwedge{}  ((|b|  =  2)  {}\mRightarrow{}  (\muparrow{}isEven(k)))])



Date html generated: 2019_10_15-AM-11_26_33
Last ObjectModification: 2019_06_26-PM-04_35_33

Theory : general


Home Index