Nuprl Lemma : sparse-signed-rep-lemma1-ext
∀m:ℤ. (∃p:ℤ × {-2..3-} [let k,b = p in (m = ((4 * k) + b) ∈ ℤ) ∧ ((|b| = 2 ∈ ℤ) 
⇒ (↑isEven(k)))])
Proof
Definitions occuring in Statement : 
isEven: isEven(n)
, 
absval: |i|
, 
int_seg: {i..j-}
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
spread: spread def, 
product: x:A × B[x]
, 
multiply: n * m
, 
add: n + m
, 
minus: -n
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
subtract: n - m
, 
isEven: isEven(n)
, 
eq_int: (i =z j)
, 
modulus: a mod n
, 
absval: |i|
, 
btrue: tt
, 
it: ⋅
, 
bfalse: ff
, 
sparse-signed-rep-lemma1, 
decidable__equal_int, 
decidable__assert, 
decidable__int_equal, 
uall: ∀[x:A]. B[x]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
strict4: strict4(F)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
prop: ℙ
, 
or: P ∨ Q
, 
squash: ↓T
Lemmas referenced : 
sparse-signed-rep-lemma1, 
lifting-strict-int_eq, 
istype-void, 
strict4-decide, 
lifting-strict-decide, 
lifting-strict-callbyvalue, 
value-type-has-value, 
int-value-type, 
has-value_wf_base, 
istype-base, 
is-exception_wf, 
istype-universe, 
lifting-strict-less, 
decidable__equal_int, 
decidable__assert, 
decidable__int_equal
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
baseClosed, 
isect_memberEquality_alt, 
voidElimination, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation_alt, 
callbyvalueIntEq, 
baseApply, 
closedConclusion, 
hypothesisEquality, 
productElimination, 
intEquality, 
universeIsType, 
int_eqExceptionCases, 
inrFormation_alt, 
imageMemberEquality, 
imageElimination, 
exceptionSqequal, 
inlFormation_alt
Latex:
\mforall{}m:\mBbbZ{}.  (\mexists{}p:\mBbbZ{}  \mtimes{}  \{-2..3\msupminus{}\}  [let  k,b  =  p  in  (m  =  ((4  *  k)  +  b))  \mwedge{}  ((|b|  =  2)  {}\mRightarrow{}  (\muparrow{}isEven(k)))])
Date html generated:
2019_10_15-AM-11_26_33
Last ObjectModification:
2019_06_26-PM-04_35_33
Theory : general
Home
Index