Nuprl Lemma : sparse-signed-rep-lemma1

m:ℤ(∃p:ℤ × {-2..3-[let k,b in (m ((4 k) b) ∈ ℤ) ∧ ((|b| 2 ∈ ℤ (↑isEven(k)))])


Proof




Definitions occuring in Statement :  isEven: isEven(n) absval: |i| int_seg: {i..j-} assert: b all: x:A. B[x] sq_exists: x:A [B[x]] implies:  Q and: P ∧ Q spread: spread def product: x:A × B[x] multiply: m add: m minus: -n natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] int_nzero: -o true: True nequal: a ≠ b ∈  not: ¬A implies:  Q uimplies: supposing a sq_type: SQType(T) guard: {T} false: False prop: so_lambda: λ2x.t[x] so_apply: x[s] top: Top pi2: snd(t) pi1: fst(t) decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q sq_exists: x:A [B[x]] int_seg: {i..j-} lelt: i ≤ j < k absval: |i| cand: c∧ B subtype_rel: A ⊆B nat: uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt iff: ⇐⇒ Q rev_implies:  Q bfalse: ff same-parity: same-parity(n;m) bool: 𝔹 unit: Unit it: bnot: ¬bb assert: b isOdd: isOdd(n) eq_int: (i =z j) modulus: mod n remainder: rem m
Lemmas referenced :  divrem_wf subtype_base_sq int_subtype_base nequal_wf set-value-type equal_wf product-value-type divrem-sq pi2_wf pi1_wf_top istype-void div_rem_sum decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf itermAdd_wf itermMultiply_wf itermConstant_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__le intformle_wf int_formula_prop_le_lemma decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than set_subtype_base lelt_wf istype-assert isEven_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma rem_bounds_absval absval_ifthenelse decidable__assert lt_int_wf assert_wf bnot_wf not_wf less_than_wf itermMinus_wf int_term_value_minus_lemma absval_wf bool_cases bool_wf bool_subtype_base eqtt_to_assert assert_of_lt_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot int_seg_properties isEven-add bool_cases_sqequal assert-bnot subtract-elim equal-wf-base le_int_wf le_wf uiff_transitivity assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut productEquality intEquality thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality dependent_set_memberEquality_alt natural_numberEquality instantiate cumulativity independent_isectElimination hypothesis dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination equalityIstype inhabitedIsType baseClosed sqequalBase universeIsType cutEval sqequalRule lambdaEquality_alt setElimination rename productElimination applyLambdaEquality independent_pairEquality isect_memberEquality_alt because_Cache unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality independent_pairFormation dependent_set_memberFormation_alt addEquality minusEquality productIsType callbyvalueReduce sqleReflexivity applyEquality baseApply closedConclusion functionIsType hyp_replacement equalityElimination promote_hyp

Latex:
\mforall{}m:\mBbbZ{}.  (\mexists{}p:\mBbbZ{}  \mtimes{}  \{-2..3\msupminus{}\}  [let  k,b  =  p  in  (m  =  ((4  *  k)  +  b))  \mwedge{}  ((|b|  =  2)  {}\mRightarrow{}  (\muparrow{}isEven(k)))])



Date html generated: 2019_10_15-AM-11_26_17
Last ObjectModification: 2019_06_26-PM-04_34_09

Theory : general


Home Index