Nuprl Lemma : sparse-signed-rep-lemma1
∀m:ℤ. (∃p:ℤ × {-2..3-} [let k,b = p in (m = ((4 * k) + b) ∈ ℤ) ∧ ((|b| = 2 ∈ ℤ) ⇒ (↑isEven(k)))])
Proof
Definitions occuring in Statement : 
isEven: isEven(n), 
absval: |i|, 
int_seg: {i..j-}, 
assert: ↑b, 
all: ∀x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
implies: P ⇒ Q, 
and: P ∧ Q, 
spread: spread def, 
product: x:A × B[x], 
multiply: n * m, 
add: n + m, 
minus: -n, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
int_nzero: ℤ-o, 
true: True, 
nequal: a ≠ b ∈ T , 
not: ¬A, 
implies: P ⇒ Q, 
uimplies: b supposing a, 
sq_type: SQType(T), 
guard: {T}, 
false: False, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
top: Top, 
pi2: snd(t), 
pi1: fst(t), 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
sq_exists: ∃x:A [B[x]], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
absval: |i|, 
cand: A c∧ B, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
bfalse: ff, 
same-parity: same-parity(n;m), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
bnot: ¬bb, 
assert: ↑b, 
isOdd: isOdd(n), 
eq_int: (i =z j), 
modulus: a mod n, 
remainder: n rem m
Lemmas referenced : 
divrem_wf, 
subtype_base_sq, 
int_subtype_base, 
nequal_wf, 
set-value-type, 
equal_wf, 
product-value-type, 
divrem-sq, 
pi2_wf, 
pi1_wf_top, 
istype-void, 
div_rem_sum, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermAdd_wf, 
itermMultiply_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-le, 
istype-less_than, 
set_subtype_base, 
lelt_wf, 
istype-assert, 
isEven_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
rem_bounds_absval, 
absval_ifthenelse, 
decidable__assert, 
lt_int_wf, 
assert_wf, 
bnot_wf, 
not_wf, 
less_than_wf, 
itermMinus_wf, 
int_term_value_minus_lemma, 
absval_wf, 
bool_cases, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
int_seg_properties, 
isEven-add, 
bool_cases_sqequal, 
assert-bnot, 
subtract-elim, 
equal-wf-base, 
le_int_wf, 
le_wf, 
uiff_transitivity, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
productEquality, 
intEquality, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
instantiate, 
cumulativity, 
independent_isectElimination, 
hypothesis, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
equalityIstype, 
inhabitedIsType, 
baseClosed, 
sqequalBase, 
universeIsType, 
cutEval, 
sqequalRule, 
lambdaEquality_alt, 
setElimination, 
rename, 
productElimination, 
applyLambdaEquality, 
independent_pairEquality, 
isect_memberEquality_alt, 
because_Cache, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
independent_pairFormation, 
dependent_set_memberFormation_alt, 
addEquality, 
minusEquality, 
productIsType, 
callbyvalueReduce, 
sqleReflexivity, 
applyEquality, 
baseApply, 
closedConclusion, 
functionIsType, 
hyp_replacement, 
equalityElimination, 
promote_hyp
Latex:
\mforall{}m:\mBbbZ{}.  (\mexists{}p:\mBbbZ{}  \mtimes{}  \{-2..3\msupminus{}\}  [let  k,b  =  p  in  (m  =  ((4  *  k)  +  b))  \mwedge{}  ((|b|  =  2)  {}\mRightarrow{}  (\muparrow{}isEven(k)))])
Date html generated:
2019_10_15-AM-11_26_17
Last ObjectModification:
2019_06_26-PM-04_34_09
Theory : general
Home
Index