Nuprl Lemma : subtract-elim

[x,y:ℤ].  (x (-y))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] subtract: m add: m minus: -n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: sq_type: SQType(T) guard: {T}
Lemmas referenced :  int_formula_prop_wf int_term_value_minus_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermMinus_wf itermAdd_wf itermVar_wf itermSubtract_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt decidable__equal_int int_subtype_base subtype_base_sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination because_Cache independent_isectElimination hypothesis dependent_functionElimination unionElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality hypothesisEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll equalityTransitivity equalitySymmetry independent_functionElimination sqequalAxiom

Latex:
\mforall{}[x,y:\mBbbZ{}].    (x  -  y  \msim{}  x  +  (-y))



Date html generated: 2016_05_14-PM-04_22_19
Last ObjectModification: 2016_01_14-PM-11_40_29

Theory : num_thy_1


Home Index