Step
*
of Lemma
test-infinite-domain-example
∀[A,D:Type]. ∀[R,Eq:D ⟶ D ⟶ ℙ].
((∀x,y,z:D. (R[x;y]
⇒ (R[y;z] ∨ Eq[y;z])
⇒ R[x;z]))
⇒ (∀x:D. (R[x;x]
⇒ A))
⇒ (∀x:D. ∃y:D. R[x;y])
⇒ (∃m:D. ∀x:D. ((Eq[x;m]
⇒ A)
⇒ R[x;m]))
⇒ A)
BY
{ (EvidenceTac ⌜λTrans,Irr,Unbdd,MxEx. let m = fst(MxEx) in
let bounds = snd(MxEx) in
let y,ygtr = Unbdd m
in let loop = Trans m y m ygtr in
let F = λx.(Irr m (loop x)) in
F (inl (bounds y (λeq.(F (inr eq )))))⌝⋅
THENA Auto
) }
Latex:
Latex:
\mforall{}[A,D:Type]. \mforall{}[R,Eq:D {}\mrightarrow{} D {}\mrightarrow{} \mBbbP{}].
((\mforall{}x,y,z:D. (R[x;y] {}\mRightarrow{} (R[y;z] \mvee{} Eq[y;z]) {}\mRightarrow{} R[x;z]))
{}\mRightarrow{} (\mforall{}x:D. (R[x;x] {}\mRightarrow{} A))
{}\mRightarrow{} (\mforall{}x:D. \mexists{}y:D. R[x;y])
{}\mRightarrow{} (\mexists{}m:D. \mforall{}x:D. ((Eq[x;m] {}\mRightarrow{} A) {}\mRightarrow{} R[x;m]))
{}\mRightarrow{} A)
By
Latex:
(EvidenceTac \mkleeneopen{}\mlambda{}Trans,Irr,Unbdd,MxEx. let m = fst(MxEx) in
let bounds = snd(MxEx) in
let y,ygtr = Unbdd m
in let loop = Trans m y m ygtr in
let F = \mlambda{}x.(Irr m (loop x)) in
F (inl (bounds y (\mlambda{}eq.(F (inr eq )))))\mkleeneclose{}\mcdot{}
THENA Auto
)
Home
Index