Nuprl Lemma : test5
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[f:a:A ⟶ B[a]]. ∀[x:A].  (f x ∈ B[x])
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_apply: x[s]
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
applyEquality, 
hypothesisEquality, 
sqequalHypSubstitution, 
hypothesis, 
universeIsType, 
functionIsType, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f:a:A  {}\mrightarrow{}  B[a]].  \mforall{}[x:A].    (f  x  \mmember{}  B[x])
Date html generated:
2019_10_15-AM-11_36_32
Last ObjectModification:
2018_10_16-PM-00_29_36
Theory : general
Home
Index