Step
*
2
1
3
2
of Lemma
tl-lastn
1. u : Top
2. v : Top List
3. ∀[n:ℤ]. (tl(lastn(n;v)) ~ if n <z ||v|| then lastn(n - 1;v) else lastn(n;tl(v)) fi )
4. n : ℤ
5. 0 < (||v|| + 1) - n
6. n < ||v|| + 1
7. 0 < (||v|| + 1) - n - 1
8. tl(lastn(n;v)) ~ if n <z ||v|| then lastn(n - 1;v) else lastn(n;tl(v)) fi
9. ||v|| ≤ n
⊢ nth_tl((n + 1) - n - 1 - 1;v) ~ nth_tl(||tl(v)|| - n;tl(v))
BY
{ xxxSubst' (n + 1) - n - 1 - 1 ~ 1 0xxx }
1
.....equality.....
1. u : Top
2. v : Top List
3. ∀[n:ℤ]. (tl(lastn(n;v)) ~ if n <z ||v|| then lastn(n - 1;v) else lastn(n;tl(v)) fi )
4. n : ℤ
5. 0 < (||v|| + 1) - n
6. n < ||v|| + 1
7. 0 < (||v|| + 1) - n - 1
8. tl(lastn(n;v)) ~ if n <z ||v|| then lastn(n - 1;v) else lastn(n;tl(v)) fi
9. ||v|| ≤ n
⊢ (n + 1) - n - 1 - 1 ~ 1
2
1. u : Top
2. v : Top List
3. ∀[n:ℤ]. (tl(lastn(n;v)) ~ if n <z ||v|| then lastn(n - 1;v) else lastn(n;tl(v)) fi )
4. n : ℤ
5. 0 < (||v|| + 1) - n
6. n < ||v|| + 1
7. 0 < (||v|| + 1) - n - 1
8. tl(lastn(n;v)) ~ if n <z ||v|| then lastn(n - 1;v) else lastn(n;tl(v)) fi
9. ||v|| ≤ n
⊢ nth_tl(1;v) ~ nth_tl(||tl(v)|| - n;tl(v))
Latex:
Latex:
1. u : Top
2. v : Top List
3. \mforall{}[n:\mBbbZ{}]. (tl(lastn(n;v)) \msim{} if n <z ||v|| then lastn(n - 1;v) else lastn(n;tl(v)) fi )
4. n : \mBbbZ{}
5. 0 < (||v|| + 1) - n
6. n < ||v|| + 1
7. 0 < (||v|| + 1) - n - 1
8. tl(lastn(n;v)) \msim{} if n <z ||v|| then lastn(n - 1;v) else lastn(n;tl(v)) fi
9. ||v|| \mleq{} n
\mvdash{} nth\_tl((n + 1) - n - 1 - 1;v) \msim{} nth\_tl(||tl(v)|| - n;tl(v))
By
Latex:
xxxSubst' (n + 1) - n - 1 - 1 \msim{} 1 0xxx
Home
Index