Nuprl Lemma : tl-lastn

[L:Top List]. ∀[n:ℤ].  (tl(lastn(n;L)) if n <||L|| then lastn(n 1;L) else lastn(n;tl(L)) fi )


Proof




Definitions occuring in Statement :  lastn: lastn(n;L) length: ||as|| tl: tl(l) list: List ifthenelse: if then else fi  lt_int: i <j uall: [x:A]. B[x] top: Top subtract: m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff lastn: lastn(n;L) nth_tl: nth_tl(n;as) le: A ≤ B bnot: ¬bb assert: b le_int: i ≤j lt_int: i <j subtract: m
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list top_wf less_than_transitivity1 less_than_irreflexivity list_wf list-cases product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int lt_int_wf bool_wf equal-wf-base assert_wf le_int_wf bnot_wf length_of_nil_lemma reduce_tl_nil_lemma lastn-nil uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int length_of_cons_lemma reduce_tl_cons_lemma length_wf subtract-is-int-iff add-is-int-iff false_wf bool_cases_sqequal bool_subtype_base assert-bnot bnot_of_le_int non_neg_length tl_wf nth_tl_nil
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom applyEquality because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate cumulativity imageElimination baseApply closedConclusion equalityElimination pointwiseFunctionality

Latex:
\mforall{}[L:Top  List].  \mforall{}[n:\mBbbZ{}].    (tl(lastn(n;L))  \msim{}  if  n  <z  ||L||  then  lastn(n  -  1;L)  else  lastn(n;tl(L))  fi  )



Date html generated: 2018_05_21-PM-06_31_39
Last ObjectModification: 2017_07_26-PM-04_51_11

Theory : general


Home Index