Nuprl Lemma : uncurry1_lemma

F:Top. (uncurry(1;λa.F[a]) ~ λa.F[a 0])


Proof




Definitions occuring in Statement :  uncurry: uncurry(n;f) top: Top so_apply: x[s] all: x:A. B[x] apply: a lambda: λx.A[x] natural_number: $n sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] uncurry: uncurry(n;f) primrec: primrec(n;b;c) subtract: m so_apply: x[s] member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule hypothesis introduction extract_by_obid

Latex:
\mforall{}F:Top.  (uncurry(1;\mlambda{}a.F[a])  \msim{}  \mlambda{}a.F[a  0])



Date html generated: 2018_05_21-PM-08_02_10
Last ObjectModification: 2018_05_19-PM-04_54_24

Theory : general


Home Index