Nuprl Lemma : uncurry1_lemma
∀F:Top. (uncurry(1;λa.F[a]) ~ λa.F[a 0])
Proof
Definitions occuring in Statement : 
uncurry: uncurry(n;f)
, 
top: Top
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
lambda: λx.A[x]
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uncurry: uncurry(n;f)
, 
primrec: primrec(n;b;c)
, 
subtract: n - m
, 
so_apply: x[s]
, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
hypothesis, 
introduction, 
extract_by_obid
Latex:
\mforall{}F:Top.  (uncurry(1;\mlambda{}a.F[a])  \msim{}  \mlambda{}a.F[a  0])
Date html generated:
2018_05_21-PM-08_02_10
Last ObjectModification:
2018_05_19-PM-04_54_24
Theory : general
Home
Index