Nuprl Lemma : uncurry2_lemma

F:Top. (uncurry(2;λx,y. F[x;y]) ~ λa.F[a 0;a 1])


Proof




Definitions occuring in Statement :  uncurry: uncurry(n;f) top: Top so_apply: x[s1;s2] all: x:A. B[x] apply: a lambda: λx.A[x] natural_number: $n sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uncurry: uncurry(n;f) primrec: primrec(n;b;c) subtract: m so_apply: x[s1;s2]
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule

Latex:
\mforall{}F:Top.  (uncurry(2;\mlambda{}x,y.  F[x;y])  \msim{}  \mlambda{}a.F[a  0;a  1])



Date html generated: 2016_05_15-PM-05_44_23
Last ObjectModification: 2015_12_27-PM-00_29_33

Theory : general


Home Index