Nuprl Lemma : uncurry2_lemma
∀F:Top. (uncurry(2;λx,y. F[x;y]) ~ λa.F[a 0;a 1])
Proof
Definitions occuring in Statement : 
uncurry: uncurry(n;f)
, 
top: Top
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
lambda: λx.A[x]
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uncurry: uncurry(n;f)
, 
primrec: primrec(n;b;c)
, 
subtract: n - m
, 
so_apply: x[s1;s2]
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule
Latex:
\mforall{}F:Top.  (uncurry(2;\mlambda{}x,y.  F[x;y])  \msim{}  \mlambda{}a.F[a  0;a  1])
Date html generated:
2016_05_15-PM-05_44_23
Last ObjectModification:
2015_12_27-PM-00_29_33
Theory : general
Home
Index