Step
*
1
1
1
of Lemma
urec-level-property
1. F : Type ⟶ Type
2. Monotone(T.F[T])
3. ∀T:Type. ((T ⊆r Base)
⇒ (F[T] ⊆r Base))
4. f : ⋂T:{T:Type| T ⊆r Base} . (x:F[T] ⟶ decomp{i:l}(T.F[T];T;x))
5. n : ℤ
6. 0 < n
7. ∀x:urec(F). (urec-level(f;x) < n - 1
⇒ (x ∈ F^urec-level(f;x) Void))
8. m : ℕ
9. x : F^m Void
10. ¬(m = 0 ∈ ℤ)
⊢ urec-level(f;x) < n
⇒ (x ∈ F^urec-level(f;x) Void)
BY
{ (Assert ∀m:ℕ. ((F^m Void) ⊆r Base) BY
(InductionOnNat
THEN Reduce 0
THEN Try ((D 0 THEN Complete (Auto)))
THEN FHyp 3 [-1]
THEN Auto
THEN Unfold `so_apply` -1
THEN RWO "fun_exp_add1" (-1)
THEN Auto))⋅ }
1
1. F : Type ⟶ Type
2. Monotone(T.F[T])
3. ∀T:Type. ((T ⊆r Base)
⇒ (F[T] ⊆r Base))
4. f : ⋂T:{T:Type| T ⊆r Base} . (x:F[T] ⟶ decomp{i:l}(T.F[T];T;x))
5. n : ℤ
6. 0 < n
7. ∀x:urec(F). (urec-level(f;x) < n - 1
⇒ (x ∈ F^urec-level(f;x) Void))
8. m : ℕ
9. x : F^m Void
10. ¬(m = 0 ∈ ℤ)
11. ∀m:ℕ. ((F^m Void) ⊆r Base)
⊢ urec-level(f;x) < n
⇒ (x ∈ F^urec-level(f;x) Void)
Latex:
Latex:
1. F : Type {}\mrightarrow{} Type
2. Monotone(T.F[T])
3. \mforall{}T:Type. ((T \msubseteq{}r Base) {}\mRightarrow{} (F[T] \msubseteq{}r Base))
4. f : \mcap{}T:\{T:Type| T \msubseteq{}r Base\} . (x:F[T] {}\mrightarrow{} decomp\{i:l\}(T.F[T];T;x))
5. n : \mBbbZ{}
6. 0 < n
7. \mforall{}x:urec(F). (urec-level(f;x) < n - 1 {}\mRightarrow{} (x \mmember{} F\^{}urec-level(f;x) Void))
8. m : \mBbbN{}
9. x : F\^{}m Void
10. \mneg{}(m = 0)
\mvdash{} urec-level(f;x) < n {}\mRightarrow{} (x \mmember{} F\^{}urec-level(f;x) Void)
By
Latex:
(Assert \mforall{}m:\mBbbN{}. ((F\^{}m Void) \msubseteq{}r Base) BY
(InductionOnNat
THEN Reduce 0
THEN Try ((D 0 THEN Complete (Auto)))
THEN FHyp 3 [-1]
THEN Auto
THEN Unfold `so\_apply` -1
THEN RWO "fun\_exp\_add1" (-1)
THEN Auto))\mcdot{}
Home
Index