Nuprl Lemma : urec-level-property

[F:Type ⟶ Type]
  (∀[f:destructor{i:l}(T.F[T])]. ∀[x:urec(F)].  (x ∈ F^urec-level(f;x) Void)) supposing 
     ((∀T:Type. ((T ⊆Base)  (F[T] ⊆Base))) and 
     Monotone(T.F[T]))


Proof




Definitions occuring in Statement :  urec-level: urec-level(f;x) destructor: destructor{i:l}(T.F[T]) urec: urec(F) type-monotone: Monotone(T.F[T]) fun_exp: f^n uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q member: t ∈ T apply: a function: x:A ⟶ B[x] base: Base void: Void universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] implies:  Q prop: nat: false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q guard: {T} le: A ≤ B subtype_rel: A ⊆B urec: urec(F) tunion: x:A.B[x] pi2: snd(t) destructor: destructor{i:l}(T.F[T]) decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) urec-level: urec-level(f;x) subtract: m decomp: decomp{i:l}(S.F[S];T;x) ap-con: ap-con(con;L) cons: [a b] ifthenelse: if then else fi  btrue: tt compose: g constructor: Constr(T.F[T]) bfalse: ff listp: List+ iff: ⇐⇒ Q rev_implies:  Q less_than': less_than'(a;b) true: True l_exists: (∃x∈L. P[x]) int_seg: {i..j-} lelt: i ≤ j < k uiff: uiff(P;Q) select: L[n] less_than: a < b squash: T l_member: (x ∈ l) cand: c∧ B colength: colength(L) nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  urec_wf destructor_wf subtype_rel_wf base_wf type-monotone_wf nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf urec-level_wf subtract-1-ge-0 nat_wf decidable__equal_int subtype_base_sq int_subtype_base fun_exp0_lemma fun_exp_wf subtract_wf decidable__le intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma le_wf fun_exp_add1 type-monotone-fun_exp subtract-add-cancel subtype_rel_transitivity intformeq_wf int_formula_prop_eq_lemma set_subtype_base add-associates add-swap add-commutes zero-add decomp_wf subtype_rel_self list-cases product_subtype_list null_nil_lemma map_nil_lemma fun_exp1_lemma nil_wf list_wf null_cons_lemma cons-listp map_wf_listp subtype_rel_dep_function void_wf listp_properties imax-list_wf subtype_rel_list decidable__lt length_wf imax-list-ub length_of_nil_lemma length_of_cons_lemma istype-false add-is-int-iff itermAdd_wf int_term_value_add_lemma false_wf select_wf cons_wf int_seg_properties map_cons_lemma l_all_iff l_member_wf member_wf map_wf map-length length-map select-map top_wf colength-cons-not-zero colength_wf_list spread_cons_lemma l_all_wf2 l_all_cons equal-wf-base equal_wf satisfiable-full-omega-tt add_nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry universeIsType extract_by_obid isectElimination thin hypothesisEquality isect_memberEquality_alt because_Cache lambdaEquality_alt applyEquality universeEquality functionIsType inhabitedIsType lambdaFormation_alt setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality dependent_functionElimination voidElimination independent_pairFormation functionIsTypeImplies applyLambdaEquality productElimination imageElimination unionElimination instantiate cumulativity intEquality closedConclusion dependent_set_memberEquality_alt voidEquality addEquality isectIsType setIsType equalityIsType1 promote_hyp hypothesis_subsumption imageMemberEquality dependent_pairEquality_alt baseClosed pointwiseFunctionality baseApply productIsType equalityIsType4 hyp_replacement computeAll isect_memberEquality dependent_pairFormation lambdaFormation lambdaEquality functionExtensionality dependent_set_memberEquality

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type]
    (\mforall{}[f:destructor\{i:l\}(T.F[T])].  \mforall{}[x:urec(F)].    (x  \mmember{}  F\^{}urec-level(f;x)  Void))  supposing 
          ((\mforall{}T:Type.  ((T  \msubseteq{}r  Base)  {}\mRightarrow{}  (F[T]  \msubseteq{}r  Base)))  and 
          Monotone(T.F[T]))



Date html generated: 2019_10_15-AM-11_31_30
Last ObjectModification: 2018_10_11-PM-11_01_57

Theory : general


Home Index