Nuprl Lemma : urec-level_wf
∀[F:Type ⟶ Type]
  ∀[f:destructor{i:l}(T.F[T])]. ∀[x:urec(F)].  (urec-level(f;x) ∈ ℕ) supposing ∀T:Type. ((T ⊆r Base) 
⇒ (F[T] ⊆r Base))
Proof
Definitions occuring in Statement : 
urec-level: urec-level(f;x)
, 
destructor: destructor{i:l}(T.F[T])
, 
urec: urec(F)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
urec: urec(F)
, 
tunion: ⋃x:A.B[x]
, 
pi2: snd(t)
, 
destructor: destructor{i:l}(T.F[T])
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
nat_plus: ℕ+
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
urec-level: urec-level(f;x)
, 
constructor: Constr(T.F[T])
, 
ap-con: ap-con(con;L)
, 
decomp: decomp{i:l}(S.F[S];T;x)
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
respects-equality: respects-equality(S;T)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
cons: [a / b]
, 
so_lambda: so_lambda3, 
so_apply: x[s1;s2;s3]
, 
subtract: n - m
, 
l_exists: (∃x∈L. P[x])
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
select: L[n]
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
fun_exp0_lemma, 
subtract-1-ge-0, 
subtype_rel-equal, 
fun_exp_wf, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
istype-le, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
fun_exp_add1_sub, 
decidable__lt, 
urec_wf, 
destructor_wf, 
istype-universe, 
subtype_rel_wf, 
base_wf, 
subtype_rel_transitivity, 
istype-nat, 
le_wf, 
decomp_wf, 
constructor_wf, 
list_wf, 
ap-con_wf, 
equal_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
equal_functionality_wrt_subtype_rel2, 
istype-base, 
subtype-respects-equality, 
null_wf3, 
subtype_rel_list, 
top_wf, 
eqtt_to_assert, 
assert_of_null, 
istype-false, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
equal-wf-T-base, 
map_wf, 
nat_wf, 
list-cases, 
product_subtype_list, 
nil_wf, 
map_cons_lemma, 
list_ind_nil_lemma, 
list_ind_cons_lemma, 
int_subtype_base, 
list_subtype_base, 
set_subtype_base, 
imax-list-ub, 
length_of_nil_lemma, 
length_of_cons_lemma, 
length_wf_nat, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
add_nat_plus, 
less_than_wf, 
nat_plus_properties, 
add-is-int-iff, 
itermAdd_wf, 
intformeq_wf, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
false_wf, 
length_wf, 
select_wf, 
cons_wf, 
int_seg_properties, 
imax-list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
imageElimination, 
productElimination, 
thin, 
sqequalRule, 
rename, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
intWeakElimination, 
lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
applyEquality, 
instantiate, 
universeEquality, 
dependent_set_memberEquality_alt, 
unionElimination, 
voidEquality, 
because_Cache, 
equalityIstype, 
isectIsTypeImplies, 
functionIsType, 
isectIsType, 
setIsType, 
dependent_pairEquality_alt, 
productIsType, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
closedConclusion, 
equalityElimination, 
equalityIsType1, 
promote_hyp, 
cumulativity, 
equalityIsType3, 
hypothesis_subsumption, 
intEquality, 
applyLambdaEquality, 
equalityIsType4, 
baseApply, 
addEquality, 
minusEquality, 
pointwiseFunctionality
Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type]
    \mforall{}[f:destructor\{i:l\}(T.F[T])].  \mforall{}[x:urec(F)].    (urec-level(f;x)  \mmember{}  \mBbbN{}) 
    supposing  \mforall{}T:Type.  ((T  \msubseteq{}r  Base)  {}\mRightarrow{}  (F[T]  \msubseteq{}r  Base))
Date html generated:
2020_05_20-AM-08_18_07
Last ObjectModification:
2019_11_27-PM-03_30_33
Theory : general
Home
Index