Nuprl Lemma : urec-level_wf

[F:Type ⟶ Type]
  ∀[f:destructor{i:l}(T.F[T])]. ∀[x:urec(F)].  (urec-level(f;x) ∈ ℕsupposing ∀T:Type. ((T ⊆Base)  (F[T] ⊆Base))


Proof




Definitions occuring in Statement :  urec-level: urec-level(f;x) destructor: destructor{i:l}(T.F[T]) urec: urec(F) nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q member: t ∈ T function: x:A ⟶ B[x] base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a urec: urec(F) tunion: x:A.B[x] pi2: snd(t) destructor: destructor{i:l}(T.F[T]) nat: implies:  Q false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q nat_plus: + so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} urec-level: urec-level(f;x) constructor: Constr(T.F[T]) ap-con: ap-con(con;L) decomp: decomp{i:l}(S.F[S];T;x) squash: T true: True iff: ⇐⇒ Q rev_implies:  Q respects-equality: respects-equality(S;T) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  le: A ≤ B less_than': less_than'(a;b) bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b cons: [a b] so_lambda: so_lambda3 so_apply: x[s1;s2;s3] subtract: m l_exists: (∃x∈L. P[x]) int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b select: L[n]
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than fun_exp0_lemma subtract-1-ge-0 subtype_rel-equal fun_exp_wf decidable__le intformnot_wf int_formula_prop_not_lemma istype-le subtract_wf itermSubtract_wf int_term_value_subtract_lemma fun_exp_add1_sub decidable__lt urec_wf destructor_wf istype-universe subtype_rel_wf base_wf subtype_rel_transitivity istype-nat le_wf decomp_wf constructor_wf list_wf ap-con_wf equal_wf squash_wf true_wf subtype_rel_self iff_weakening_equal equal_functionality_wrt_subtype_rel2 istype-base subtype-respects-equality null_wf3 subtype_rel_list top_wf eqtt_to_assert assert_of_null istype-false eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf equal-wf-T-base map_wf nat_wf list-cases product_subtype_list nil_wf map_cons_lemma list_ind_nil_lemma list_ind_cons_lemma int_subtype_base list_subtype_base set_subtype_base imax-list-ub length_of_nil_lemma length_of_cons_lemma length_wf_nat not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel add_nat_plus less_than_wf nat_plus_properties add-is-int-iff itermAdd_wf intformeq_wf int_term_value_add_lemma int_formula_prop_eq_lemma false_wf length_wf select_wf cons_wf int_seg_properties imax-list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution imageElimination productElimination thin sqequalRule rename extract_by_obid isectElimination hypothesisEquality hypothesis setElimination intWeakElimination lambdaFormation_alt natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination independent_pairFormation universeIsType axiomEquality equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType applyEquality instantiate universeEquality dependent_set_memberEquality_alt unionElimination voidEquality because_Cache equalityIstype isectIsTypeImplies functionIsType isectIsType setIsType dependent_pairEquality_alt productIsType imageMemberEquality baseClosed hyp_replacement closedConclusion equalityElimination equalityIsType1 promote_hyp cumulativity equalityIsType3 hypothesis_subsumption intEquality applyLambdaEquality equalityIsType4 baseApply addEquality minusEquality pointwiseFunctionality

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type]
    \mforall{}[f:destructor\{i:l\}(T.F[T])].  \mforall{}[x:urec(F)].    (urec-level(f;x)  \mmember{}  \mBbbN{}) 
    supposing  \mforall{}T:Type.  ((T  \msubseteq{}r  Base)  {}\mRightarrow{}  (F[T]  \msubseteq{}r  Base))



Date html generated: 2020_05_20-AM-08_18_07
Last ObjectModification: 2019_11_27-PM-03_30_33

Theory : general


Home Index