Nuprl Lemma : destructor_wf

[F:Type ⟶ Type]. (destructor{i:l}(T.F[T]) ∈ 𝕌')


Proof




Definitions occuring in Statement :  destructor: destructor{i:l}(T.F[T]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T destructor: destructor{i:l}(T.F[T]) so_apply: x[s] so_lambda: λ2x.t[x]
Lemmas referenced :  subtype_rel_wf base_wf decomp_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule isectEquality setEquality universeEquality cumulativity lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis functionEquality applyEquality setElimination rename lambdaEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  (destructor\{i:l\}(T.F[T])  \mmember{}  \mBbbU{}')



Date html generated: 2016_05_15-PM-06_56_49
Last ObjectModification: 2015_12_27-AM-11_39_39

Theory : general


Home Index