Nuprl Lemma : decomp_wf
∀[F:Type ⟶ Type]. ∀[T:{T:Type| T ⊆r Base} ]. ∀[x:F[T]].  (decomp{i:l}(T.F[T];T;x) ∈ 𝕌')
Proof
Definitions occuring in Statement : 
decomp: decomp{i:l}(S.F[S];T;x)
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
decomp: decomp{i:l}(S.F[S];T;x)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
constructor_wf, 
list_wf, 
equal_wf, 
ap-con_wf, 
subtype_rel_wf, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
setElimination, 
thin, 
rename, 
sqequalRule, 
productEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
universeEquality, 
cumulativity, 
hypothesis, 
setEquality, 
dependent_set_memberEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
functionEquality
Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  \mforall{}[T:\{T:Type|  T  \msubseteq{}r  Base\}  ].  \mforall{}[x:F[T]].    (decomp\{i:l\}(T.F[T];T;x)  \mmember{}  \mBbbU{}')
Date html generated:
2018_05_21-PM-08_44_39
Last ObjectModification:
2017_07_26-PM-06_08_26
Theory : general
Home
Index