Nuprl Lemma : decomp_wf

[F:Type ⟶ Type]. ∀[T:{T:Type| T ⊆Base} ]. ∀[x:F[T]].  (decomp{i:l}(T.F[T];T;x) ∈ 𝕌')


Proof




Definitions occuring in Statement :  decomp: decomp{i:l}(S.F[S];T;x) subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T decomp: decomp{i:l}(S.F[S];T;x) so_lambda: λ2x.t[x] so_apply: x[s] prop:
Lemmas referenced :  constructor_wf list_wf equal_wf ap-con_wf subtype_rel_wf base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut setElimination thin rename sqequalRule productEquality extract_by_obid sqequalHypSubstitution isectElimination lambdaEquality applyEquality functionExtensionality hypothesisEquality universeEquality cumulativity hypothesis setEquality dependent_set_memberEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality functionEquality

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  \mforall{}[T:\{T:Type|  T  \msubseteq{}r  Base\}  ].  \mforall{}[x:F[T]].    (decomp\{i:l\}(T.F[T];T;x)  \mmember{}  \mBbbU{}')



Date html generated: 2018_05_21-PM-08_44_39
Last ObjectModification: 2017_07_26-PM-06_08_26

Theory : general


Home Index