Nuprl Lemma : urec_wf
∀[F:Type ⟶ Type]. (urec(F) ∈ Type)
Proof
Definitions occuring in Statement : 
urec: urec(F)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
urec: urec(F)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
tunion_wf, 
nat_wf, 
fun_exp_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
applyEquality, 
instantiate, 
universeEquality, 
hypothesisEquality, 
voidEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality
Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  (urec(F)  \mmember{}  Type)
Date html generated:
2016_05_15-PM-06_50_39
Last ObjectModification:
2015_12_27-AM-11_44_24
Theory : general
Home
Index