Nuprl Lemma : urec_wf

[F:Type ⟶ Type]. (urec(F) ∈ Type)


Proof




Definitions occuring in Statement :  urec: urec(F) uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T urec: urec(F) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  tunion_wf nat_wf fun_exp_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality applyEquality instantiate universeEquality hypothesisEquality voidEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  (urec(F)  \mmember{}  Type)



Date html generated: 2016_05_15-PM-06_50_39
Last ObjectModification: 2015_12_27-AM-11_44_24

Theory : general


Home Index