Nuprl Lemma : cons-listp
∀[T:Type]. ∀[l:T List]. ∀[x:T].  ([x / l] ∈ T List+)
Proof
Definitions occuring in Statement : 
listp: A List+
, 
cons: [a / b]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
top: Top
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
listp: A List+
, 
prop: ℙ
, 
ge: i ≥ j 
, 
subtract: n - m
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
decidable: Dec(P)
, 
or: P ∨ Q
Lemmas referenced : 
length_of_cons_lemma, 
istype-void, 
length_wf_nat, 
set_subtype_base, 
le_wf, 
istype-int, 
int_subtype_base, 
cons_wf, 
less_than_wf, 
length_wf, 
list_wf, 
add-commutes, 
add_functionality_wrt_le, 
subtract_wf, 
le_reflexive, 
minus-one-mul, 
zero-add, 
one-mul, 
add-mul-special, 
add-associates, 
two-mul, 
mul-distributes-right, 
zero-mul, 
not-lt-2, 
minus-zero, 
add-zero, 
add-swap, 
omega-shadow, 
nat_properties, 
decidable__lt
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
Error :isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
isectElimination, 
hypothesisEquality, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
Error :dependent_pairFormation_alt, 
Error :universeIsType, 
sqequalIntensionalEquality, 
applyEquality, 
intEquality, 
Error :lambdaEquality_alt, 
natural_numberEquality, 
independent_isectElimination, 
because_Cache, 
Error :equalityIsType1, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
productElimination, 
promote_hyp, 
Error :dependent_set_memberEquality_alt, 
axiomEquality, 
universeEquality, 
multiplyEquality, 
addEquality, 
minusEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
setElimination, 
rename, 
unionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].  \mforall{}[x:T].    ([x  /  l]  \mmember{}  T  List\msupplus{})
Date html generated:
2019_06_20-PM-00_40_23
Last ObjectModification:
2018_10_03-PM-02_06_12
Theory : list_0
Home
Index