Nuprl Lemma : cons-listp

[T:Type]. ∀[l:T List]. ∀[x:T].  ([x l] ∈ List+)


Proof




Definitions occuring in Statement :  listp: List+ cons: [a b] list: List uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] top: Top implies:  Q exists: x:A. B[x] subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a listp: List+ prop: ge: i ≥  subtract: m uiff: uiff(P;Q) and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A nat_plus: + less_than: a < b squash: T true: True decidable: Dec(P) or: P ∨ Q
Lemmas referenced :  length_of_cons_lemma istype-void length_wf_nat set_subtype_base le_wf istype-int int_subtype_base cons_wf less_than_wf length_wf list_wf add-commutes add_functionality_wrt_le subtract_wf le_reflexive minus-one-mul zero-add one-mul add-mul-special add-associates two-mul mul-distributes-right zero-mul not-lt-2 minus-zero add-zero add-swap omega-shadow nat_properties decidable__lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin Error :isect_memberEquality_alt,  voidElimination hypothesis isectElimination hypothesisEquality Error :inhabitedIsType,  Error :lambdaFormation_alt,  Error :dependent_pairFormation_alt,  Error :universeIsType,  sqequalIntensionalEquality applyEquality intEquality Error :lambdaEquality_alt,  natural_numberEquality independent_isectElimination because_Cache Error :equalityIsType1,  equalityTransitivity equalitySymmetry independent_functionElimination productElimination promote_hyp Error :dependent_set_memberEquality_alt,  axiomEquality universeEquality multiplyEquality addEquality minusEquality independent_pairFormation imageMemberEquality baseClosed setElimination rename unionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].  \mforall{}[x:T].    ([x  /  l]  \mmember{}  T  List\msupplus{})



Date html generated: 2019_06_20-PM-00_40_23
Last ObjectModification: 2018_10_03-PM-02_06_12

Theory : list_0


Home Index