Step
*
of Lemma
polyvar_wf
∀[v:ℕ]. (polyvar(v) ∈ polynom(v + 1))
BY
{ ((Assert ⌜∀[v:ℕ]. (polyvar(v) ∈ {p:polynom(v + 1)| poly-zero(p) = ff ∧ poly-int(p) = ff} )⌝⋅ THENM Auto)
THEN InductionOnNat
THEN Unfold `polynom` 0
THEN RecUnfold `polyvar` 0
THEN Reduce 0
THEN Auto
THEN (GenConclTerm ⌜polyvar(v - 1)⌝⋅ THENA Auto)
THEN Thin (-1)
THEN (Subst' (v - 1) + 1 ~ v -1 THENA Auto)
THEN DVar `v1'
THEN (D -1 ORELSE (DVar `v1' THEN Auto))
THEN MemTypeCD
THEN Auto) }
1
1. v : ℤ
2. v ≠ 0
3. 0 < v
4. polyvar(v - 1) ∈ {p:polynom((v - 1) + 1)| poly-zero(p) = ff ∧ poly-int(p) = ff}
5. v1 : polynom(v)
6. poly-zero(v1) = ff
7. poly-int(v1) = ff
⊢ tree_node(v1;tree_leaf(0)) ∈ {p:polyform(v + 1)| (↑poly-int(p))
⇒ (↑tree_leaf?(p))}
2
1. v : ℤ
2. v ≠ 0
3. 0 < v
4. polyvar(v - 1) ∈ {p:polynom((v - 1) + 1)| poly-zero(p) = ff ∧ poly-int(p) = ff}
5. v1 : polynom(v)
6. poly-zero(v1) = ff
7. poly-int(v1) = ff
8. poly-zero(tree_node(v1;tree_leaf(0))) = ff
⊢ poly-int(tree_node(v1;tree_leaf(0))) = ff
Latex:
Latex:
\mforall{}[v:\mBbbN{}]. (polyvar(v) \mmember{} polynom(v + 1))
By
Latex:
((Assert \mkleeneopen{}\mforall{}[v:\mBbbN{}]. (polyvar(v) \mmember{} \{p:polynom(v + 1)| poly-zero(p) = ff \mwedge{} poly-int(p) = ff\} )\mkleeneclose{}\mcdot{} THENM A\000Cuto)
THEN InductionOnNat
THEN Unfold `polynom` 0
THEN RecUnfold `polyvar` 0
THEN Reduce 0
THEN Auto
THEN (GenConclTerm \mkleeneopen{}polyvar(v - 1)\mkleeneclose{}\mcdot{} THENA Auto)
THEN Thin (-1)
THEN (Subst' (v - 1) + 1 \msim{} v -1 THENA Auto)
THEN DVar `v1'
THEN (D -1 ORELSE (DVar `v1' THEN Auto))
THEN MemTypeCD
THEN Auto)
Home
Index