Nuprl Lemma : polyvar_wf
∀[v:ℕ]. (polyvar(v) ∈ polynom(v + 1))
Proof
Definitions occuring in Statement : 
polyvar: polyvar(v), 
polynom: polynom(n), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
all: ∀x:A. B[x], 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
polynom: polynom(n), 
polyvar: polyvar(v), 
cand: A c∧ B, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
iff: P ⇐⇒ Q, 
poly-zero: poly-zero(p), 
band: p ∧b q, 
tree_leaf?: tree_leaf?(v), 
eq_atom: x =a y, 
pi1: fst(t), 
tree_node: tree_node(left;right), 
rev_implies: P ⇐ Q, 
poly-int: poly-int(p), 
tree_ind: tree_ind, 
tree_leaf: tree_leaf(value), 
btrue: tt, 
eq_int: (i =z j), 
tree_leaf-value: tree_leaf-value(v), 
pi2: snd(t), 
ispolyform: ispolyform(p), 
lt_int: i <z j, 
true: True, 
polyform: polyform(n), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
subtype_rel: A ⊆r B, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
nequal: a ≠ b ∈ T , 
has-value: (a)↓, 
subtract: n - m, 
decidable: Dec(P), 
squash: ↓T
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
iff_imp_equal_bool, 
poly-zero_wf, 
tree_node_wf, 
tree_leaf_wf, 
bfalse_wf, 
istype-assert, 
poly-int_wf, 
assert_elim, 
btrue_neq_bfalse, 
ispolyform_wf, 
tree_leaf?_wf, 
bool_wf, 
subtract-1-ge-0, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
subtract-add-cancel, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
eqff_to_assert, 
int_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
value-type-has-value, 
polyform_wf, 
value-type-polyform, 
nat_wf, 
ispolyform_node_lemma, 
ispolyform_leaf_lemma, 
iff_transitivity, 
assert_wf, 
subtract_wf, 
btrue_wf, 
lt_int_wf, 
assert_of_lt_int, 
iff_weakening_uiff, 
less_than_wf, 
add-subtract-cancel, 
intformnot_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_add_lemma, 
true_wf, 
assert_of_band, 
add-associates, 
add-swap, 
add-commutes, 
zero-add, 
decidable__lt, 
assert_functionality_wrt_uiff, 
band_wf, 
squash_wf, 
iff_functionality_wrt_iff, 
false_wf, 
iff_weakening_equal, 
equal_wf, 
istype-universe, 
subtype_rel_self
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
intEquality, 
because_Cache, 
dependent_set_memberEquality_alt, 
productElimination, 
applyEquality, 
functionIsType, 
productIsType, 
equalityIsType3, 
baseClosed, 
closedConclusion, 
unionElimination, 
equalityElimination, 
int_eqReduceTrueSq, 
equalityIsType2, 
baseApply, 
promote_hyp, 
instantiate, 
cumulativity, 
int_eqReduceFalseSq, 
callbyvalueReduce, 
axiomSqleEquality, 
equalityIsType1, 
addEquality, 
productEquality, 
imageElimination, 
imageMemberEquality, 
universeEquality
Latex:
\mforall{}[v:\mBbbN{}].  (polyvar(v)  \mmember{}  polynom(v  +  1))
Date html generated:
2019_10_15-AM-10_52_16
Last ObjectModification:
2018_10_12-AM-10_36_37
Theory : integer!polynomial!trees
Home
Index