Nuprl Lemma : poly-int_wf
∀[p:tree(ℤ)]. (poly-int(p) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
poly-int: poly-int(p), 
tree: tree(E), 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
poly-int: poly-int(p), 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
so_apply: x[s1;s2;s3;s4]
Lemmas referenced : 
tree_ind_wf_simple, 
bool_wf, 
btrue_wf, 
istype-int, 
eqtt_to_assert, 
poly-zero_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
bfalse_wf, 
tree_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
hypothesis, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
inhabitedIsType, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation_alt, 
equalityIsType1, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
because_Cache, 
voidElimination, 
universeIsType
Latex:
\mforall{}[p:tree(\mBbbZ{})].  (poly-int(p)  \mmember{}  \mBbbB{})
Date html generated:
2019_10_15-AM-10_52_12
Last ObjectModification:
2018_10_11-PM-06_52_03
Theory : integer!polynomial!trees
Home
Index