Nuprl Lemma : tree_wf

[E:Type]. (tree(E) ∈ Type)


Proof




Definitions occuring in Statement :  tree: tree(E) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T tree: tree(E) uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] prop:
Lemmas referenced :  treeco_wf has-value_wf-partial nat_wf set-value-type le_wf int-value-type treeco_size_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule setEquality lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis independent_isectElimination intEquality lambdaEquality natural_numberEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[E:Type].  (tree(E)  \mmember{}  Type)



Date html generated: 2016_05_15-PM-01_49_27
Last ObjectModification: 2015_12_27-AM-00_12_37

Theory : tree_1


Home Index