Nuprl Lemma : treeco_wf

[E:Type]. (treeco(E) ∈ Type)


Proof




Definitions occuring in Statement :  treeco: treeco(E) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T treeco: treeco(E) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  corec_wf ifthenelse_wf eq_atom_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality productEquality atomEquality instantiate hypothesisEquality tokenEquality hypothesis universeEquality voidEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[E:Type].  (treeco(E)  \mmember{}  Type)



Date html generated: 2016_05_15-PM-01_49_20
Last ObjectModification: 2015_12_27-AM-00_12_38

Theory : tree_1


Home Index