Nuprl Lemma : treeco_wf
∀[E:Type]. (treeco(E) ∈ Type)
Proof
Definitions occuring in Statement : 
treeco: treeco(E)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
treeco: treeco(E)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
corec_wf, 
ifthenelse_wf, 
eq_atom_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
lambdaEquality, 
productEquality, 
atomEquality, 
instantiate, 
hypothesisEquality, 
tokenEquality, 
hypothesis, 
universeEquality, 
voidEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[E:Type].  (treeco(E)  \mmember{}  Type)
Date html generated:
2016_05_15-PM-01_49_20
Last ObjectModification:
2015_12_27-AM-00_12_38
Theory : tree_1
Home
Index