Nuprl Lemma : tree_ind_wf_simple

[E,A:Type]. ∀[v:tree(E)]. ∀[leaf:value:E ⟶ A]. ∀[node:left:tree(E) ⟶ right:tree(E) ⟶ A ⟶ A ⟶ A].
  (tree_ind(v;
            tree_leaf(value) leaf[value];
            tree_node(left,right) rec1,rec2.node[left;right;rec1;rec2])  ∈ A)


Proof




Definitions occuring in Statement :  tree_ind: tree_ind tree: tree(E) uall: [x:A]. B[x] so_apply: x[s1;s2;s3;s4] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtype_rel: A ⊆B true: True so_lambda: λ2x.t[x] so_apply: x[s] prop: uimplies: supposing a all: x:A. B[x]
Lemmas referenced :  tree_ind_wf true_wf tree_wf istype-true subtype_rel_dep_function istype-universe
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality_alt universeIsType because_Cache functionExtensionality applyEquality dependent_set_memberEquality_alt natural_numberEquality functionEquality inhabitedIsType setEquality independent_isectElimination lambdaFormation_alt setIsType setElimination rename applyLambdaEquality functionIsType instantiate universeEquality

Latex:
\mforall{}[E,A:Type].  \mforall{}[v:tree(E)].  \mforall{}[leaf:value:E  {}\mrightarrow{}  A].
\mforall{}[node:left:tree(E)  {}\mrightarrow{}  right:tree(E)  {}\mrightarrow{}  A  {}\mrightarrow{}  A  {}\mrightarrow{}  A].
    (tree\_ind(v;
                        tree\_leaf(value){}\mRightarrow{}  leaf[value];
                        tree\_node(left,right){}\mRightarrow{}  rec1,rec2.node[left;right;rec1;rec2])    \mmember{}  A)



Date html generated: 2020_05_20-AM-07_48_02
Last ObjectModification: 2020_01_24-PM-02_47_50

Theory : tree_1


Home Index