Nuprl Lemma : tree_ind_wf_simple
∀[E,A:Type]. ∀[v:tree(E)]. ∀[leaf:value:E ⟶ A]. ∀[node:left:tree(E) ⟶ right:tree(E) ⟶ A ⟶ A ⟶ A].
  (tree_ind(v;
            tree_leaf(value)
⇒ leaf[value];
            tree_node(left,right)
⇒ rec1,rec2.node[left;right;rec1;rec2])  ∈ A)
Proof
Definitions occuring in Statement : 
tree_ind: tree_ind, 
tree: tree(E)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2;s3;s4]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
true: True
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
Lemmas referenced : 
tree_ind_wf, 
true_wf, 
tree_wf, 
istype-true, 
subtype_rel_dep_function, 
istype-universe
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
universeIsType, 
because_Cache, 
functionExtensionality, 
applyEquality, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
functionEquality, 
inhabitedIsType, 
setEquality, 
independent_isectElimination, 
lambdaFormation_alt, 
setIsType, 
setElimination, 
rename, 
applyLambdaEquality, 
functionIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[E,A:Type].  \mforall{}[v:tree(E)].  \mforall{}[leaf:value:E  {}\mrightarrow{}  A].
\mforall{}[node:left:tree(E)  {}\mrightarrow{}  right:tree(E)  {}\mrightarrow{}  A  {}\mrightarrow{}  A  {}\mrightarrow{}  A].
    (tree\_ind(v;
                        tree\_leaf(value){}\mRightarrow{}  leaf[value];
                        tree\_node(left,right){}\mRightarrow{}  rec1,rec2.node[left;right;rec1;rec2])    \mmember{}  A)
Date html generated:
2020_05_20-AM-07_48_02
Last ObjectModification:
2020_01_24-PM-02_47_50
Theory : tree_1
Home
Index