Nuprl Lemma : poly-zero_wf
∀[p:tree(ℤ)]. (poly-zero(p) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
poly-zero: poly-zero(p), 
tree: tree(E), 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
poly-zero: poly-zero(p), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
bfalse: ff, 
prop: ℙ
Lemmas referenced : 
tree_leaf?_wf, 
bool_wf, 
eqtt_to_assert, 
eq_int_wf, 
tree_leaf-value_wf, 
equal_wf, 
tree_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
because_Cache, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality
Latex:
\mforall{}[p:tree(\mBbbZ{})].  (poly-zero(p)  \mmember{}  \mBbbB{})
Date html generated:
2017_10_01-AM-08_32_09
Last ObjectModification:
2017_05_02-PM-01_44_33
Theory : integer!polynomial!trees
Home
Index