Nuprl Lemma : tree_leaf_wf
∀[E:Type]. ∀[value:E].  (tree_leaf(value) ∈ tree(E))
Proof
Definitions occuring in Statement : 
tree_leaf: tree_leaf(value), 
tree: tree(E), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
tree: tree(E), 
tree_leaf: tree_leaf(value), 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
subtype_rel: A ⊆r B, 
ext-eq: A ≡ B, 
and: P ∧ Q, 
treeco_size: treeco_size(p), 
tree_size: tree_size(p), 
has-value: (a)↓, 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
all: ∀x:A. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a
Lemmas referenced : 
treeco-ext, 
ifthenelse_wf, 
eq_atom_wf, 
treeco_wf, 
false_wf, 
le_wf, 
nat_wf, 
has-value_wf_base, 
set_subtype_base, 
int_subtype_base, 
is-exception_wf, 
equal_wf, 
has-value_wf-partial, 
set-value-type, 
int-value-type, 
treeco_size_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
dependent_set_memberEquality, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
sqequalRule, 
dependent_pairEquality, 
tokenEquality, 
hypothesisEquality, 
instantiate, 
universeEquality, 
productEquality, 
voidEquality, 
applyEquality, 
productElimination, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation, 
divergentSqle, 
sqleReflexivity, 
intEquality, 
lambdaEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
cumulativity
Latex:
\mforall{}[E:Type].  \mforall{}[value:E].    (tree\_leaf(value)  \mmember{}  tree(E))
Date html generated:
2017_10_01-AM-08_30_26
Last ObjectModification:
2017_07_26-PM-04_24_34
Theory : tree_1
Home
Index