Nuprl Lemma : tree_leaf_wf

[E:Type]. ∀[value:E].  (tree_leaf(value) ∈ tree(E))


Proof




Definitions occuring in Statement :  tree_leaf: tree_leaf(value) tree: tree(E) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T tree: tree(E) tree_leaf: tree_leaf(value) eq_atom: =a y ifthenelse: if then else fi  btrue: tt subtype_rel: A ⊆B ext-eq: A ≡ B and: P ∧ Q treeco_size: treeco_size(p) tree_size: tree_size(p) has-value: (a)↓ nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a
Lemmas referenced :  treeco-ext ifthenelse_wf eq_atom_wf treeco_wf false_wf le_wf nat_wf has-value_wf_base set_subtype_base int_subtype_base is-exception_wf equal_wf has-value_wf-partial set-value-type int-value-type treeco_size_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut dependent_set_memberEquality introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin because_Cache sqequalRule dependent_pairEquality tokenEquality hypothesisEquality instantiate universeEquality productEquality voidEquality applyEquality productElimination natural_numberEquality independent_pairFormation lambdaFormation divergentSqle sqleReflexivity intEquality lambdaEquality independent_isectElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination cumulativity

Latex:
\mforall{}[E:Type].  \mforall{}[value:E].    (tree\_leaf(value)  \mmember{}  tree(E))



Date html generated: 2017_10_01-AM-08_30_26
Last ObjectModification: 2017_07_26-PM-04_24_34

Theory : tree_1


Home Index